高中數(shù)學必修三知識點(通用5篇)
在平平淡淡的學習中,是不是經(jīng)常追著老師要知識點?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。掌握知識點是我們提高成績的關鍵!下面是小編為大家整理的高中數(shù)學必修三知識點,僅供參考,希望能夠幫助到大家。
高中數(shù)學必修三知識點 篇1
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合中元素的三個特性:
1.元素的確定性;
2.元素的互異性;
3.元素的無序性
說明:
(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
關于“屬于”的概念
集合的元素通常用小寫的.拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
、僬Z言描述法:例:{不是直角三角形的三角形}
②數(shù)學式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{x x-3>2}
4、集合的分類:
1.有限集含有有限個元素的集合
2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{x x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:有兩種可能
(1)A是B的一部分。
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={x x2-1=0}B={-1,1}“元素相同”
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
④如果AíB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
高中數(shù)學必修三知識點 篇2
1、柱、錐、臺、球的結(jié)構特征
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:
、偕舷碌酌媸窍嗨频钠叫卸噙呅
、趥(cè)面是梯形
③側(cè)棱交于原棱錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:
、俚酌媸侨鹊膱A;
②母線與軸平行;
、圯S與底面圓的半徑垂直;
、軅(cè)面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:
、俚酌媸且粋圓;
②母線交于圓錐的頂點;
、蹅(cè)面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的'平面去截圓錐,截面和底面之間的部分
幾何特征:
、偕舷碌酌媸莾蓚圓;
、趥(cè)面母線交于原圓錐的頂點;
、蹅(cè)面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
、偾虻慕孛媸菆A;
、谇蛎嫔先我庖稽c到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
高中數(shù)學必修三知識點 篇3
1、直線方程形式
一般式:Ax+By+C=0(AB≠0)
斜截式:y=kx+b(k是斜率b是x軸截距)
點斜式:y-y1=k(x-x1)(直線過定點(x1,y1))
兩點式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(x1,y1),(x2,y2))
截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)
做題過程中,點斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。
在與圓及圓錐曲線結(jié)合的過程中,還要用到點到直線距離公式。
2、直線方程的局限性
各種不同形式的直線方程的局限性:
(1)點斜式和斜截式都不能表示斜率不存在的直線;
(2)兩點式不能表示與坐標軸平行的直線;
(3)截距式不能表示與坐標軸平行或過原點的直線;
(4)直線方程的一般式中系數(shù)A、B不能同時為零。
數(shù)學直線和圓知識點
1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))、應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況?
2、知直線縱截距,常設其方程為或;知直線橫截距,常設其方程為(直線斜率k存在時,為k的.倒數(shù))或知直線過點,常設其方程為
(2)直線在坐標軸上的截距可正、可負、也可為0、直線兩截距相等直線的斜率為-1或直線過原點;直線兩截距互為相反數(shù)直線的斜率為1或直線過原點;直線兩截距絕對值相等直線的斜率為或直線過原點
(3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合
3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是
4、線性規(guī)劃中幾個概念:約束條件、可行解、可行域、目標函數(shù)、最優(yōu)解
5、圓的方程:最簡方程;標準方程;
6、解決直線與圓的關系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”
(1)過圓上一點圓的切線方程
過圓上一點圓的切線方程
過圓上一點圓的切線方程
如果點在圓外,那么上述直線方程表示過點兩切線上兩切點的“切點弦”方程
如果點在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)
7、曲線與的交點坐標方程組的解;
過兩圓交點的圓(公共弦)系為,當且僅當無平方項時,為兩圓公共弦所在直線方程
高中數(shù)學必修三知識點 篇4
一.隨機事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的'頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率
二.概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以
P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:
(1)事件A發(fā)生且事件B不發(fā)生;
(2)事件A不發(fā)生且事件B發(fā)生;
(3)事件A與事件B同時不發(fā)生;
而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;
(1)事件A發(fā)生B不發(fā)生;
(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
三.古典概型及隨機數(shù)的產(chǎn)生
(1)古典概型的使用條件:試驗結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
、偾蟪隹偟幕臼录䲠(shù);
、谇蟪鍪录嗀所包含的基本事件數(shù),然后利用公式P(A)=
四.幾何概型及均勻隨機數(shù)的產(chǎn)生
基本概念:
(1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:P(A)=;
(3)幾何概型的特點:
1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;
2)每個基本事件出現(xiàn)的可能性相等
高中數(shù)學必修三知識點 篇5
總體和樣本
、僭诮y(tǒng)計學中,把研究對象的全體叫做總體。
②把每個研究對象叫做個體。
、郯芽傮w中個體的總數(shù)叫做總體容量。
、転榱搜芯靠傮w的有關性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的`個數(shù)稱為樣本容量。
簡單隨機抽樣也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎,高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
簡單隨機抽樣常用的方法
、俪楹灧
、陔S機數(shù)表法
、塾嬎銠C模擬法
、苁褂媒y(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設計中,主要考慮:
①總體變異情況;
、谠试S誤差范圍;
③概率保證程度。
抽簽法
、俳o調(diào)查對象群體中的每一個對象編號;
、跍蕚涑楹灥墓ぞ,實施抽簽;
、蹖颖局械拿恳粋個體進行測量或調(diào)查。
【高中數(shù)學必修三知識點】相關文章:
高中數(shù)學必修知識點11-08
高中數(shù)學必修知識點(8篇)11-10
高中數(shù)學必修知識點8篇11-09
高中數(shù)學必修教案03-01