當前位置:育文網(wǎng)>高中>高中數(shù)學> 初高中數(shù)學銜接知識點

初高中數(shù)學銜接知識點

時間:2024-10-25 14:26:30 賽賽 高中數(shù)學 我要投稿
  • 相關推薦

初高中數(shù)學銜接知識點

  在日常的學習中,不管我們學什么,都需要掌握一些知識點,知識點就是掌握某個問題/知識的學習要點。你知道哪些知識點是真正對我們有幫助的嗎?以下是小編幫大家整理的初高中數(shù)學銜接知識點,希望能夠幫助到大家。

初高中數(shù)學銜接知識點

  初高中數(shù)學銜接知識點 1

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類:①有理數(shù)分成整數(shù),分數(shù);整數(shù)又分成正整數(shù),負整數(shù)和0;分數(shù)分成正分數(shù)和負分數(shù)。②有理數(shù)分成正數(shù)、0、負數(shù)。正數(shù)又分成正整數(shù)和正分數(shù),負數(shù)分成負整數(shù)和負分數(shù)。

  2.數(shù)軸:

  數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0,a+b=0a、b互為相反數(shù).

  4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

  6.互為倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=-1?a、b互為負倒數(shù).

  7.有理數(shù)加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數(shù)與0相加,仍得這個數(shù);

  8.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

  9.有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

  10.有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.

  11.有理數(shù)乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.

  12.有理數(shù)除法法則:

  除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù)。

  圓周角定理及其推論

  1、圓周角

  頂點在圓上,并且兩邊都和圓相交的角叫做圓周角。

  2、圓周角定理

  一條弧所對的圓周角等于它所對的圓心角的一半。

  推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  直角坐標系與點的位置

  1、直角坐標系中,點A(3,0)在y軸上。

  2、直角坐標系中,x軸上的任意點的橫坐標為0.

  3、直角坐標系中,點A(1,1)在第一象限。

  4、直角坐標系中,點A(-2,3)在第四象限。

  5、直角坐標系中,點A(-2,1)在第二象限。

  基本函數(shù)的概念及性質

  1、函數(shù)y=-8x是一次函數(shù)。

  2、函數(shù)y=4x+1是正比例函數(shù)。

  3、函數(shù)是反比例函數(shù)。

  4、拋物線y=-3(x-2)2-5的開口向下。

  5、拋物線y=4(x-3)2-10的對稱軸是x=3。

  6、拋物線的頂點坐標是(1,2)。

  7、反比例函數(shù)的圖象在第一、三象限。

  旋轉

  1、概念:

  把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。

  旋轉三要素:旋轉中心、旋轉方面、旋轉角

  2、旋轉的性質:

  (1)旋轉前后的兩個圖形是全等形;

  (2)兩個對應點到旋轉中心的距離相等

  (3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角

  3、中心對稱:

  把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。

  這兩個圖形中的對應點叫做關于中心的對稱點。

  4、中心對稱的性質:

  (1)關于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

  (2)關于中心對稱的兩個圖形是全等圖形。

  5、中心對稱圖形:

  把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

  反三角函數(shù):

  y=arcsin(x),定義域[-1,1],值域[-π/2,π/2]圖象用紅色線條;

  y=arccos(x),定義域[-1,1],值域[0,π],圖象用藍色線條;

  y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

  sin(arcsinx)=x,定義域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

  其他公式:

  三角函數(shù)其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  當x∈[—π/2,π/2]時,有arcsin(sinx)=x

  當x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx

  直線、平面、簡單多面體

  1.計算異面直線所成角的關鍵是平移(補形)轉化為兩直線的夾角計算

  2.計算直線與平面所成的角關鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點到直線的距離,后虛擬直角三角形求解.注:一斜線與平面上以斜足為頂點的角的兩邊所成角相等斜線在平面上射影為角的平分線.

  3.空間平行垂直關系的證明,主要依據(jù)相關定義、公理、定理和空間向量進行,請重視線面平行關系、線面垂直關系(三垂線定理及其逆定理)的橋梁作用.注意:書寫證明過程需規(guī)范.

  4.直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關于側棱、側面、對角面、平行于底的截面的幾何體性質.

  如長方體中:對角線長,棱長總和為,全(表)面積為,(結合可得關于他們的等量關系,結合基本不等式還可建立關于他們的不等關系式),如三棱錐中:側棱長相等(側棱與底面所成角相等)頂點在底上射影為底面外心,側棱兩兩垂直(兩對對棱垂直)頂點在底上射影為底面垂心,斜高長相等(側面與底面所成相等)且頂點在底上在底面內頂點在底上射影為底面內心.

  5.求幾何體體積的常規(guī)方法是:公式法、割補法、等積(轉換)法、比例(性質轉換)法等.注意:補形:三棱錐三棱柱平行六面體

  6.多面體是由若干個多邊形圍成的幾何體.棱柱和棱錐是特殊的多面體.

  正多面體的每個面都是相同邊數(shù)的正多邊形,以每個頂點為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體.

  7.球體積公式。球表面積公式,是兩個關于球的幾何度量公式.它們都是球半徑及的函數(shù).

  初高中數(shù)學銜接知識點 2

  1.1正數(shù)和負數(shù)

  以前學過的0以外的數(shù)前面加上負號-的書叫做負數(shù)。

  以前學過的0以外的數(shù)叫做正數(shù)。

  數(shù)0既不是正數(shù)也不是負數(shù),0是正數(shù)與負數(shù)的分界。

  在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義

  1.2有理數(shù)

  1.2.1有理數(shù)

  正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)。

  整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。

  1.2.2數(shù)軸

  規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸。

  數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的點來表達。

  注意事項:⑴數(shù)軸的原點、正方向、單位長度三要素,缺一不可。

 、仆桓鶖(shù)軸,單位長度不能改變。

  一般地,設是一個正數(shù),則數(shù)軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數(shù)-a的點在原點的左邊,與原點的距離是a個單位長度。

  1.2.3相反數(shù)

  只有符號不同的兩個數(shù)叫做互為相反數(shù)。

  數(shù)軸上表示相反數(shù)的兩個點關于原點對稱。

  在任意一個數(shù)前面添上-號,新的數(shù)就表示原數(shù)的相反數(shù)。

  1.2.4絕對值

  一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。

  一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

  在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。

  比較有理數(shù)的大。孩耪龜(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。

  ⑵兩個負數(shù),絕對值大的反而小。

  1.3有理數(shù)的加減法

  1.3.1有理數(shù)的加法

  有理數(shù)的加法法則:

 、磐杻蓴(shù)相加,取相同的符號,并把絕對值相加。

  ⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。

  ⑶一個數(shù)同0相加,仍得這個數(shù)。

  兩個數(shù)相加,交換加數(shù)的位置,和不變。

  加法交換律:a+b=b+a

  三個數(shù)相加,先把前面兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

  加法結合律:(a+b)+c=a+(b+c)

  1.3.2有理數(shù)的減法

  有理數(shù)的減法可以轉化為加法來進行。

  有理數(shù)減法法則:

  減去一個數(shù),等于加這個數(shù)的相反數(shù)。

  a-b=a+(-b)

  1.4有理數(shù)的乘除法

  1.4.1有理數(shù)的乘法

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

  任何數(shù)同0相乘,都得0。

  乘積是1的兩個數(shù)互為倒數(shù)。

  幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負因數(shù)的個數(shù)是奇數(shù)時,積是負數(shù)。

  兩個數(shù)相乘,交換因數(shù)的位置,積相等。

  ab=ba

  三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。

  (ab)c=a(bc)

  一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  a(b+c)=ab+ac

  數(shù)字與字母相乘的書寫規(guī)范:

  ⑴數(shù)字與字母相乘,乘號要省略,或用

 、茢(shù)字與字母相乘,當系數(shù)是1或-1時,1要省略不寫。

 、菐Х謹(shù)與字母相乘,帶分數(shù)應當化成假分數(shù)。

  用字母x表示任意一個有理數(shù),2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數(shù)。

  一般地,合并含有相同字母因數(shù)的式子時,只需將它們的系數(shù)合并,所得結果作為系數(shù),再乘字母因數(shù),即

  ax+bx=(a+b)x

  上式中x是字母因數(shù),a與b分別是ax與bx這兩項的系數(shù)。

  去括號法則:

  括號前是+,把括號和括號前的+去掉,括號里各項都不改變符號。

  括號前是-,把括號和括號前的-去掉,括號里各項都改變符號。

  括號外的因數(shù)是正數(shù),去括號后式子各項的符號與原括號內式子相應各項的符號相同;括號外的因數(shù)是負數(shù),去括號后式子各項的符號與原括號內式子相應各項的符號相反。

  1.4.2有理數(shù)的除法

  有理數(shù)除法法則:

  除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

  ab=a (b0)

  兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。

  因為有理數(shù)的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結果。

  1.5有理數(shù)的乘方

  1.5.1乘方

  求n個相同因數(shù)的的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數(shù),n叫做指數(shù),當an看作a的n次方的結果時,也可以讀作a的n次冪。

  負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。

  正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  有理數(shù)混合運算的運算順序:

 、畔瘸朔,再乘除,最后加減;

 、仆夁\算,從左到右進行;

 、侨缬欣ㄌ,先做括號內的運算,按小括號、中括號、大括號依次進行

  1.5.2科學記數(shù)法

  把一個大于10的數(shù)表示成a10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學記數(shù)法。

  用科學記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是n-1。

  1.5.3近似數(shù)和有效數(shù)字

  接近實際數(shù)目,但與實際數(shù)目還有差別的數(shù)叫做近似數(shù)。

  精確度:一個近似數(shù)四舍五入到哪一位,就說精確到哪一位。

  從一個數(shù)的左邊第一個非0 數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字。

  對于用科學記數(shù)法表示的數(shù)a10n,規(guī)定它的有效數(shù)字就是a中的有效數(shù)字。

  初高中數(shù)學銜接知識點 3

  一個整數(shù)a和一個非零整數(shù)b的比是有理數(shù)(rationalnumber)正數(shù)與負數(shù)

  像3,2,1.2這樣大于0的數(shù)叫做正數(shù),根據(jù)需要,也可以在正數(shù)前面加上“+”(正)號;像—3,—2,—2.5這樣在正數(shù)前面加上“—”(負)號的數(shù)叫做負數(shù);0既不是正數(shù),也不是負數(shù)。

  有理數(shù)加法

  1、有理數(shù)的加法法則(有理數(shù)加法運算律):

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;

 。3)一個數(shù)同0相加,仍得這個數(shù)。

  2、方法與技巧:進行有理數(shù)的加法運算時,要先觀察相加兩數(shù)的符號,再確定和的符號,最后計算和的絕對值。

  數(shù)學軸

  可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸(numberaxis)。

  原點(origin)、正方向(positivedirection)和單位長度(unitlength)稱為數(shù)軸三要素,它們缺一不可。

  【數(shù)軸與實數(shù)】

  數(shù)軸上的點與實數(shù)一一對應。

  【數(shù)軸的性質】

  數(shù)軸上從左往右的點表示的數(shù)是從小往大的順序,那么利用數(shù)軸可以比較數(shù)的大小。在數(shù)軸上表示的兩個數(shù)右邊的總比左邊的大;正數(shù)都大于零;負數(shù)都小于零;正數(shù)大于一切負數(shù)。另外由于數(shù)軸是一條直線,是可以向兩端無限延伸的,因此沒有最小的負數(shù),也沒有最大的正數(shù)。

  絕對值

  絕對值的代數(shù)定義:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零。

  絕對值的幾何定義:在數(shù)軸上表示一個數(shù)的點離開原點的距離,叫做這個數(shù)的絕對值。

  絕對值求法:一個正數(shù)a的絕對值是它本身a;一個負數(shù)a的絕對值是它的相反數(shù)—a;零的絕對值是零。

  絕對值表示法:a的絕對值用“|a|”表示。讀作“a的絕對值。

【初高中數(shù)學銜接知識點】相關文章:

初高中數(shù)學知識點06-20

初高中語文數(shù)學知識點總結02-04

初高中生物知識點01-26

初高中物理銜接教學工作心得12-13

(優(yōu)秀)初高中生物知識點03-25

幼兒銜接數(shù)學教案05-06

幼小銜接數(shù)學教案03-08

幼小銜接數(shù)學課教案11-26

幼兒園數(shù)學幼小銜接教案12-09