[熱]初中數(shù)學(xué)知識點(diǎn)歸納.
在平時的學(xué)習(xí)中,很多人都經(jīng)常追著老師們要知識點(diǎn)吧,知識點(diǎn)是指某個模塊知識的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。還在為沒有系統(tǒng)的知識點(diǎn)而發(fā)愁嗎?以下是小編收集整理的初中數(shù)學(xué)知識點(diǎn)歸納.,僅供參考,大家一起來看看吧。
初中數(shù)學(xué)知識點(diǎn)歸納.1
方差是實(shí)際值與期望值之差平方的期望值,而標(biāo)準(zhǔn)差是方差算術(shù)平方根。 在實(shí)際計(jì)算中,我們用以下公式計(jì)算方差。
方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示樣本的平均數(shù),n表示樣本的數(shù)量,xn表示個體,而s^2就表示方差。
而當(dāng)用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作為樣本X的方差的估計(jì)時,發(fā)現(xiàn)其數(shù)學(xué)期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的數(shù)學(xué)期望才是X的.方差,用它作為X的方差的估計(jì)具有“無偏性”,所以我們總是用[1/(n-1)]∑(xi-X~)^2來估計(jì)X的方差,并且把它叫做“樣本方差”。
方差,通俗點(diǎn)講,就是和中心偏離的程度!用來衡量一批數(shù)據(jù)的波動大小(即這批數(shù)據(jù)偏離平均數(shù)的大小)并把它叫做這組數(shù)據(jù)的方差。記作S。 在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定。
定義 設(shè)X是一個隨機(jī)變量,若E{[X-E(X)]^2}存在,則稱E{[X-E(X)]^2}為X的方差,記為D(X),Var(X)或DX。
即D(X)=E{[X-E(X)]^2}稱為方差,而σ(X)=D(X)^0.5(與X有相同的量綱)稱為標(biāo)準(zhǔn)差(或均方差)。即用來衡量一組數(shù)據(jù)的離散程度的統(tǒng)計(jì)量。
方差刻畫了隨機(jī)變量的取值對于其數(shù)學(xué)期望的離散程度。(標(biāo)準(zhǔn)差.方差越大,離散程度越大。否則,反之)
若X的取值比較集中,則方差D(X)較小
若X的取值比較分散,則方差D(X)較大。
因此,D(X)是刻畫X取值分散程度的一個量,它是衡量X取值分散程度的一個尺度。
計(jì)算 由定義知,方差是隨機(jī)變量 X 的函數(shù)
g(X)=∑[X-E(X)]^2 pi
數(shù)學(xué)期望。即:
由方差的定義可以得到以下常用計(jì)算公式:
D(X)=∑xipi-E(x)
D(X)=∑(xipi+E(X)pi-2xipiE(X))
=∑xipi+∑E(X)pi-2E(X)∑xipi
=∑xipi+E(X)-2E(X)
=∑xipi-E(x)
方差其實(shí)就是標(biāo)準(zhǔn)差的平方。
初中數(shù)學(xué)知識點(diǎn)歸納.2
數(shù)軸
規(guī)定了原點(diǎn)、正方向、單位長度的直線叫做數(shù)軸。
數(shù)軸的作用:所有的.有理數(shù)都可以用數(shù)軸上的點(diǎn)來表達(dá)。
注意事項(xiàng):
、艛(shù)軸的原點(diǎn)、正方向、單位長度三要素,缺一不可。
、仆桓鶖(shù)軸,單位長度不能改變。
一般地,設(shè)是一個正數(shù),則數(shù)軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個單位長度;表示數(shù)-a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個單位長度。
初中數(shù)學(xué)知識點(diǎn)歸納.3
菱形
1、菱形的定義 :有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴ 矩形具有平行四邊形的一切性質(zhì);
、 菱形的四條邊都相等;
、 菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
、 菱形是軸對稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,
可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。
3、菱形的判定方法:
、 定義:一組鄰邊相等的平行四邊形是菱形。
、 判斷方法1:對角線互相垂直的平行四邊形是菱形。
、 判斷方法2:四條邊相等的四邊形是菱形。
4、菱形面積的計(jì)算:
菱形面積 = 底×高 = 對角線長乘積的一半 S菱形=1/2×ab(a、b為兩條對角線)
歸納:對角線互相垂直的四邊形的面積等于對角線長乘積的一半。
希望上面對菱形知識點(diǎn)的總結(jié)學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們一定能很好的參加考試工作。
初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。
對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的`橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。
一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點(diǎn):因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉(xiàng)負(fù)號放括號外
、呃ㄌ杻(nèi)同類項(xiàng)合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識點(diǎn)歸納.4
二次函數(shù)基本知識點(diǎn)
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的.拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點(diǎn)P,坐標(biāo)為
P[-b/2a,(4ac-b^2;)/4a]。
當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
二次函數(shù)的三種表達(dá)式
、僖话闶剑簓=ax^2+bx+c(a,b,c為常數(shù),a≠0)
、陧旤c(diǎn)式[拋物線的頂點(diǎn)P(h,k)]:y=a(x-h)^2+k
、劢稽c(diǎn)式[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線]:y=a(x-x1)(x-x2)
以上3種形式可進(jìn)行如下轉(zhuǎn)化:
、僖话闶胶晚旤c(diǎn)式的關(guān)系
對于二次函數(shù)y=ax^2+bx+c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
、谝话闶胶徒稽c(diǎn)式的關(guān)系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
初中數(shù)學(xué)知識點(diǎn)歸納.5
全等三角形的判定:
①邊角邊公理(SAS)
、诮沁吔枪恚ˋSA)
③角角邊定理(AAS)
、苓呥呥吂恚⊿SS)
、菪边、直角邊公理(HL)
正方形定理公式
正方形的特征:
、僬叫蔚乃倪呄嗟;
、谡叫蔚乃膫角都是直角;
、壅叫蔚膬蓷l對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
、儆幸粋角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
平行四邊形
平行四邊形的性質(zhì):
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
、趦山M對邊分別相等的四邊形是平行四邊形;
、蹖蔷互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
直角三角形的性質(zhì):
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的.平方(勾股定理);
、苤苯侨切沃30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
、儆袃蓚角互余的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形(勾股定理的逆定理)。
等腰三角形的性質(zhì):
、俚妊切蔚膬蓚底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
初中數(shù)學(xué)知識點(diǎn)歸納.6
自然數(shù)的分類包括了奇數(shù)和偶數(shù),質(zhì)數(shù)與合數(shù)、1和0。
自然數(shù)的分類
、侔茨芊癖2整除分
可分為奇數(shù)和偶數(shù)。
1、奇 數(shù):不能被2整除的數(shù)叫奇數(shù)。
2、偶 數(shù):能被2整除的數(shù)叫偶數(shù)。
注:0是偶數(shù)。(20xx年國際數(shù)學(xué)協(xié)會規(guī)定,零為偶數(shù).我國20xx年也規(guī)定零為偶數(shù)。偶數(shù)可以被2整除,0照樣可以,只不過得數(shù)依然是0而已)。
②按因數(shù)個數(shù)分
可分為質(zhì)數(shù)、合數(shù)、1和0。
1、質(zhì) 數(shù):只有1和它本身這兩個因數(shù)的自然數(shù)叫做質(zhì)數(shù)。也稱作素?cái)?shù)。
2、合 數(shù):除了1和它本身還有其它的'因數(shù)的自然數(shù)叫做合數(shù)。
3、1:只有1個因數(shù)。它既不是質(zhì)數(shù)也不是合數(shù)。
4、當(dāng)然0不能計(jì)算因數(shù),和1一樣,也不是質(zhì)數(shù)也不是合數(shù)。
備注:這里是因數(shù)不是約數(shù)。
同學(xué)們對于“0”,它是否包括在自然數(shù)之內(nèi)存在爭議,其實(shí)學(xué)術(shù)界目前關(guān)于這個問題尚無一致意見。
初中數(shù)學(xué)知識點(diǎn)歸納.7
簡單解釋就是,用不等號可以將兩個解析式連接起來所成的式子就是我們這一章節(jié)所說的不等式。
不等式
例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)
“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個命題,也可以表示一個問題。
其實(shí)在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式了。
初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。
對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。
一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的`掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點(diǎn):因式分解
因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號化成單括號
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項(xiàng)負(fù)號放括號外
、呃ㄌ杻(nèi)同類項(xiàng)合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識點(diǎn)歸納.8
三角形競賽要領(lǐng):已知兩條直角邊的長度 可按公式:c2=a2+b2 (2是平方)
三角形斜邊公式
直角三角形ABC的六個元素中除直角C外,其余五個元素有如下關(guān)系
A+B=90度
SinA=角A的對邊 / 斜邊
CosA=角A的鄰邊 / 斜邊
tgA=角A的對邊 / 角A的鄰邊
ctgA=角A的鄰邊 / 角A的對邊
例:角A等于30度,角A的對邊是4米,計(jì)算斜邊C是多少?
查表sin30度=0.5, C=4/0.5=8
知識總結(jié):如已知一條直邊和一個銳角,可用直角三角函數(shù)計(jì)算
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。
對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的`坐標(biāo)。
一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
因式分解
因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項(xiàng)負(fù)號放括號外
、呃ㄌ杻(nèi)同類項(xiàng)合并。
初中數(shù)學(xué)知識點(diǎn)歸納.9
我們學(xué)習(xí)過的配方法其實(shí)可解全部的.一元二次方程,但基本上的題型是容易配方的試題。
配方法
如:解方程:x2+2x-3=0
解:把常數(shù)項(xiàng)移項(xiàng)得:x2+2x=3
等式兩邊同時加1(構(gòu)成完全平方式)得:x2+2x+1=4
因式分解得:(x+1)2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口訣
二次系數(shù)化為一
常數(shù)要往右邊移
一次系數(shù)一半方
兩邊加上最相當(dāng)
解決一元二次方程的方法有很多,是我們經(jīng)常轉(zhuǎn)化運(yùn)用的知識要領(lǐng)。
初中數(shù)學(xué)知識點(diǎn)歸納.10
1.通過猜想,驗(yàn)證,計(jì)算得到的定理:
(1)全等三角形的判定定理:
(2)與等腰三角形的相關(guān)結(jié)論:
、俚妊切蝺傻捉窍嗟(等邊對等角)
、诘妊切雾斀堑钠椒志,底邊上的中線,底邊上的高互相重合(三線合一)
、塾袃蓚角相等的三角形是等腰三角形(等角對等邊)
(3)與等邊三角形相關(guān)的結(jié)論:
①有一個角是60°得等腰三角形是等邊三角形
、谌齻角都相等的三角形是等邊三角形
、廴龡l邊都相等的三角形是等邊三角形
(4)與直角三角形相關(guān)的結(jié)論:
、俟垂啥ɡ恚涸谥苯侨切沃,兩直角邊的平方和等于斜邊的平方
、诠垂啥ɡ砟娑ɡ恚涸谝粋三角形中兩直角邊的平方和等于斜邊的平方,那么這個三角形一定是直角三角形
、跦L定理:斜邊和一條直角邊對應(yīng)相等的兩個三角形全等
④在三角形中30°角所對的直角邊等于斜邊的一半
2.兩條特殊線
(1)線段的垂直平分線
、倬段的垂直平分線上的點(diǎn)到線段兩邊的距離相等互為逆定理{
、诘揭粭l線段兩個端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上
③三角形的三條垂直平分線交于一點(diǎn),并且這一點(diǎn)到這三個頂點(diǎn)的距離相等
(2)角平分線
、俳瞧椒志上的點(diǎn)到這個角的兩邊距離相等互為逆定理{
②在一個角的內(nèi)部,并且到這個角的兩邊距離相等的的點(diǎn),在這個角的角平分線上
3.命題的`逆命題及真假
、僭趦蓚命題中,如果一個命題的條件與結(jié)論是另一個命題的結(jié)論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題
②如果一個定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理
、鄯凑ǎ簭姆穸}的結(jié)論入手,并把對命題結(jié)論的否定作為推理的已知條件,進(jìn)行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設(shè)不成立,所以肯定了命題的結(jié)論,使命題獲得了證明
第二章一元二次方程
1.一元二次方程:只含有一個未知數(shù)X的整式方程,并且可以化成aX?+bX+C=0(a≠0)形式稱它為一元二次方程
aX?+bX+C=0(a≠0)→一般形式
aX?叫二次項(xiàng)bX叫一次項(xiàng)C叫常數(shù)項(xiàng)a叫二次項(xiàng)系數(shù)b叫一次項(xiàng)系數(shù)
2.一元二次方程解法:
(1)配方法:(X±a)?=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1
(2)公式法:aX?+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b?-4ac≥0
若b?-4ac>0則有兩個不相等的實(shí)根,若b?-4ac=0則有兩個相等的實(shí)根,若b?-4ac<0則無解
若b?-4ac≥0則用公式X=-b±√b?-4ac/2a注:必須化為一般形式
(3)分解因式法
、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0
平方差公式:a?-b?=0→(a+b)(a-b)=0
、谶\(yùn)用公式法:{
完全平方公式:a?±2ab+b?=0→(a±b)?=0
③十字相乘法
例題:X?-2X-3=0
1/111
×}X?的系數(shù)為1則可以寫成{常數(shù)項(xiàng)系數(shù)為3則可寫成{
1/-31-3
--------
-3+1=-2交叉相乘在相加求值,值必須等于一次項(xiàng)系數(shù)
(X+1)(X-3)=o
初中數(shù)學(xué)知識點(diǎn)歸納.11
橢圓知識:平面內(nèi)與兩定點(diǎn)F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動點(diǎn)P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點(diǎn)F1、F2叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點(diǎn)。
長軸為 2a; 短軸為 2b。
橢圓的第二定義
平面內(nèi)到定點(diǎn)F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點(diǎn)的集合(定點(diǎn)F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點(diǎn)F為橢圓的焦點(diǎn),定直線稱為橢圓的準(zhǔn)線(該定直線的方程是x=±a^2/c[焦點(diǎn)在X軸上];或者y=±a^2/c[焦點(diǎn)在Y軸上])。
橢圓的其他定義
根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點(diǎn)與橢圓短軸兩端點(diǎn)連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點(diǎn)的連線的斜率之積是常數(shù)k的動點(diǎn)的軌跡是橢圓,此時k應(yīng)滿足一定的條件,也就是排除斜率不存在的情況,還有K應(yīng)滿足<0且不等于-1。
簡單幾何性質(zhì)
1、范圍
2、對稱性:關(guān)于X軸對稱,Y軸對稱,關(guān)于原點(diǎn)中心對稱。
3、頂點(diǎn):(當(dāng)中心為原點(diǎn)時)(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率范圍 0
知識歸納:離心率越大橢圓就越扁,越小則越接近于圓。
初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。
對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。
一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的'多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
初中數(shù)學(xué)知識點(diǎn):因式分解
因式分解
因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號化成單括號
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項(xiàng)負(fù)號放括號外
、呃ㄌ杻(nèi)同類項(xiàng)合并。
初中數(shù)學(xué)知識點(diǎn)歸納.12
最簡單的解釋就是,不等式是指用不等號可以將兩個解析式連接起來所成的式子。
1.概念:在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
2、分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)
“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的'定義域,不等式既可以表達(dá)一個命題,也可以表示一個問題。
我們大家在判定不等式時要記得,在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式。
初中數(shù)學(xué)知識點(diǎn)歸納.13
一元一次方程定義
通過化簡,只含有一個未知數(shù),且含有未知數(shù)的最高次項(xiàng)的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。
一元指方程僅含有一個未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標(biāo)準(zhǔn)形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。
即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項(xiàng)為1;⑷含未知數(shù)的項(xiàng)的系數(shù)不為0。
一元一次方程的五個核心問題
一、什么是等式?1+1=1是等式嗎?
表示相等關(guān)系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數(shù)值代替等式中的字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數(shù)值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。
一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。
等式與代數(shù)式不同,等式中含有等號,代數(shù)式中不含等號。
等式有兩個重要性質(zhì)1)等式的兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數(shù)除數(shù)不為零,所得結(jié)果仍然是一個等式。
二、什么是方程,什么是一元一次方程?
含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點(diǎn):一是不是等式;二是否含有未知數(shù),兩者缺一不可。
只含有一個未知數(shù),并且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標(biāo)準(zhǔn)形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實(shí)際上是一個一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因?yàn)樗姆帜钢泻形粗獢?shù)x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡,則為x=2,這時再去作判斷,將得到錯誤的結(jié)論。
凡是談到次數(shù)的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的方程。
三、等式有什么牛掰的基本性質(zhì)嗎?
將方程中的.某些項(xiàng)改變符號后,從方程的一邊移到另一邊的變形叫做移項(xiàng),移項(xiàng)的依據(jù)是等式的基本性質(zhì)1。
移項(xiàng)時不一定要把含未知數(shù)的項(xiàng)移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數(shù)的項(xiàng)移到右邊,而把常數(shù)項(xiàng)移到左邊,這樣會顯得簡便些。
去分母,將未知數(shù)的系數(shù)化為1,則是依據(jù)等式的基本性質(zhì)2進(jìn)行的。
四、等式一定是方程嗎?方程一定是等式嗎?
等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。
五、"解方程"與"方程的解"是一回事兒嗎?
方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結(jié)果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。
初中數(shù)學(xué)知識點(diǎn)歸納.14
平方根表示法:一個非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號a。a叫被開方數(shù)。
中被開方數(shù)的取值范圍:被開方數(shù)a≥0
平方根性質(zhì):①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒有平方根開平方;求一個數(shù)的平方根的運(yùn)算,叫做開平方。
平方根與算術(shù)平方根區(qū)別:1、定義不同。2表示方法不同。3、個數(shù)不同。4、取值范圍不同。
聯(lián)系:1、二者之間存在著從屬關(guān)系。2、存在條件相同。3、0的算術(shù)平方根與平方根都是0
含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。
求正數(shù)a的.算術(shù)平方根的方法;
完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中數(shù)學(xué)知識點(diǎn)歸納.15
如果一組等距的`平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
平行定理
平行定理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:
同位角相等,兩直線平行
內(nèi)錯角相等,兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行
兩直線平行推論:
兩直線平行,同位角相等
【初中數(shù)學(xué)知識點(diǎn)歸納.】相關(guān)文章:
初中數(shù)學(xué)圓的知識點(diǎn)歸納04-15
關(guān)于初中數(shù)學(xué)的知識點(diǎn)歸納03-26
初中數(shù)學(xué)知識點(diǎn)的歸納03-22
歸納初中數(shù)學(xué)知識點(diǎn)03-30
初中數(shù)學(xué)定理知識點(diǎn)歸納03-31
初中數(shù)學(xué)知識點(diǎn)歸納03-31
初中數(shù)學(xué)線角的知識點(diǎn)歸納03-31
初中數(shù)學(xué)重要知識點(diǎn)歸納04-03