- 相關(guān)推薦
《直線的參數(shù)方程》教學(xué)反思
身為一名剛到崗的人民教師,我們要在課堂教學(xué)中快速成長(zhǎng),通過(guò)教學(xué)反思可以有效提升自己的教學(xué)能力,寫(xiě)教學(xué)反思需要注意哪些格式呢?以下是小編精心整理的《直線的參數(shù)方程》教學(xué)反思,僅供參考,歡迎大家閱讀。
《直線的參數(shù)方程》教學(xué)反思 1
我所教班級(jí)是文科班,學(xué)生的總體數(shù)學(xué)水平處于我校的中等水平,學(xué)生們對(duì)于數(shù)學(xué)這個(gè)學(xué)科本身的興趣有限,對(duì)前面學(xué)過(guò)的有關(guān)直線和圓中的基本知識(shí)點(diǎn)掌握的一般。針對(duì)以上實(shí)際情況,我采用如下方案對(duì)參數(shù)方程進(jìn)行了講解。
一、講解情況
第一,講解學(xué)習(xí)本章的重要意義。通過(guò)本章節(jié)的教學(xué)使學(xué)生明白現(xiàn)實(shí)世界的問(wèn)題是多維度的、多種多樣的,僅僅用一種坐標(biāo)系,一種方程來(lái)研究是很難解決現(xiàn)實(shí)世界中的復(fù)雜的問(wèn)題的。在這一點(diǎn)上,參數(shù)方程有其自身的優(yōu)越性,學(xué)習(xí)參數(shù)方程有其必要性。
第二,講解參數(shù)方程的基本原理和基本知識(shí)。通過(guò)學(xué)習(xí)參數(shù)方程的基本概念、基本原理、基本方法,以及方程之間、坐標(biāo)之間的互化,使學(xué)生明白坐標(biāo)系及各種方程的表示方法是可以視實(shí)際需要,主觀能動(dòng)地加以選擇的。
第三,講解典型例題和解題方法。通過(guò)例題的講解讓學(xué)生們進(jìn)一步鞏固基礎(chǔ)知識(shí),同時(shí)還能熟練解題方法,為進(jìn)一步學(xué)習(xí)數(shù)學(xué)和其他自然科學(xué)知識(shí)打好基礎(chǔ)。
第四,布置課后練習(xí)。既可以鞏固學(xué)過(guò)的知識(shí),又可以達(dá)到溫故而知新的效果。
二、成功之處
第一,突出教學(xué)內(nèi)容的本質(zhì),注重學(xué)以致用。課堂不應(yīng)該是“一言堂”,學(xué)生也不再是教師注入知識(shí)的“容器瓶”,課堂上,老師應(yīng)為學(xué)生講清楚相關(guān)理論、原理及思維方法,做到授之以漁,而非僅是授之以魚(yú)。
第二,保證活躍的課堂氣氛,進(jìn)一步激發(fā)了學(xué)生的學(xué)習(xí)潛能。實(shí)踐證明,刻板的課堂氣氛往往禁錮學(xué)生的思維,致使學(xué)習(xí)積極參與度下降,學(xué)習(xí)興趣下降,最終影響學(xué)習(xí)成績(jī)和創(chuàng)造性思維的發(fā)展。
第三,結(jié)合本節(jié)課的具體內(nèi)容,確立互動(dòng)式教學(xué)法進(jìn)行教學(xué)。積極創(chuàng)造機(jī)會(huì)讓不同程度的學(xué)生發(fā)表自己的觀點(diǎn),調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,拉近師生距離,提高知識(shí)的.可接受度,進(jìn)而完成知識(shí)的轉(zhuǎn)化,即變書(shū)本的知識(shí)、老師的知識(shí)為自己的知識(shí)。
第四,有效地提高教學(xué)實(shí)效。通過(guò)老師的講解和學(xué)生的練習(xí),讓學(xué)生不斷地鞏固基礎(chǔ)知識(shí)的同時(shí),讓學(xué)生們既要能做這道題,還要能做類(lèi)似的題目,做到既知其然,又知其所以然,舉一反三,觸類(lèi)旁通,把知識(shí)靈活運(yùn)用。
三、不足之處
第一,本節(jié)課的知識(shí)量比較大,而且是建立在向量定義基礎(chǔ)之上。
這些知識(shí)學(xué)生都已經(jīng)學(xué)過(guò)了,在課堂上只做了一個(gè)簡(jiǎn)單的復(fù)習(xí)。但是在接下來(lái)的課堂上發(fā)現(xiàn)一部分學(xué)生由于基礎(chǔ)知識(shí)不扎實(shí),導(dǎo)致課堂上簡(jiǎn)單的計(jì)算出錯(cuò),從而影響到學(xué)生在做練習(xí)時(shí)反映出的思維比較的緩慢及無(wú)法進(jìn)行有效的思考的問(wèn)題。從課堂的效果來(lái)看學(xué)生對(duì)運(yùn)算的熟練程度還不夠,一定程度上存在很大的惰性,不愿動(dòng)筆的問(wèn)題存在,有待于在以后的教學(xué)中督促學(xué)生加強(qiáng)動(dòng)筆的頻率,減少惰性。
《直線的參數(shù)方程》教學(xué)反思 2
直線與方程是解析幾何的起點(diǎn),是與初中一次函數(shù)直線緊密聯(lián)系,也就是數(shù)形結(jié)合思想突出的重要一章,所以學(xué)好這一章非常有必要。
直線與方程這一章體現(xiàn)了數(shù)形結(jié)合思想,直線方程的五種形式需要學(xué)生的靈活應(yīng)用。但許多學(xué)生在做題中用斜截式較多,可能是學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù)。所以我們?cè)趯W(xué)習(xí)直線的方程時(shí),要不斷強(qiáng)化學(xué)生對(duì)其他直線方程的應(yīng)用。學(xué)生在做題中通常會(huì)忽略K的存在性,這需要不斷加強(qiáng),還有就是各個(gè)方程運(yùn)用的'限定條件。數(shù)形結(jié)合是本模塊重要的數(shù)學(xué)思想,這不僅是因?yàn)榻馕鰩缀伪旧砭褪菙?shù)形結(jié)合的典范,而且在研究幾何圖形的性質(zhì)時(shí),也充分體現(xiàn)“形”的直觀性和“數(shù)”的嚴(yán)謹(jǐn)性。教學(xué)過(guò)程應(yīng)“接頭續(xù)尾,注重過(guò)程”。教材中求直線方程采取先特殊后一般的邏輯方式,幾種特殊形式的方程:斜截式、點(diǎn)斜式、兩點(diǎn)式、截距式的幾何特征明顯,但各有其局限性。而一般形式的方程雖無(wú)任何限制,但幾何特征卻不明顯。通過(guò)引導(dǎo),使學(xué)生經(jīng)歷下列過(guò)程:首先建立坐標(biāo)系,將幾何問(wèn)題代數(shù)化,用代數(shù)語(yǔ)言描述幾何要素及其相互關(guān)系;進(jìn)而,將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題;處理代數(shù)問(wèn)題;分析代數(shù)結(jié)論的幾何含義,最終解決幾何問(wèn)題。通過(guò)上述活動(dòng),使學(xué)生感受到解析幾何研究問(wèn)題的一般程序。由“形”問(wèn)題轉(zhuǎn)化為“數(shù)”問(wèn)題研究,同時(shí)數(shù)形結(jié)合的思想,還應(yīng)包含構(gòu)造“形”來(lái)體會(huì)問(wèn)題本質(zhì),開(kāi)拓思路,進(jìn)而解決“數(shù)”的問(wèn)題。
總之,在直線與方程這一節(jié)中,我們以后的教學(xué)更應(yīng)該注重學(xué)生能力的培養(yǎng),讓學(xué)生自己推導(dǎo)公式,在推導(dǎo)的過(guò)程中認(rèn)識(shí)公式,使學(xué)生理解公式,從而認(rèn)識(shí)解析法的數(shù)學(xué)魅力,正確運(yùn)用解析法,而不是把公式當(dāng)做是記憶的東西,一味的死記硬背,而忘掉條件限制。
《直線的參數(shù)方程》教學(xué)反思 3
學(xué)習(xí)解析幾何知識(shí),"解析法"思想始終貫穿在全章的每個(gè)知識(shí)點(diǎn),同時(shí)"轉(zhuǎn)化、討論"思想也相映其中,無(wú)形中增添了數(shù)學(xué)的魅力以及優(yōu)化了知識(shí)結(jié)構(gòu)。在學(xué)習(xí)直線與方程時(shí),重點(diǎn)是學(xué)習(xí)直線方程的五種形式,以直線作為研究對(duì)象,通過(guò)引進(jìn)坐標(biāo)系,借助"數(shù)形結(jié)合"思想,從方程的角度來(lái)研究直線,包括位置關(guān)系及度量關(guān)系。大多數(shù)學(xué)生普遍反映:相對(duì)立體幾何而言,平面解析幾何的學(xué)習(xí)是輕松的、容易的,但是,也存在"運(yùn)算量大,解題過(guò)程繁瑣,結(jié)果容易出錯(cuò)"等致命的`弱點(diǎn)等,無(wú)疑也影響了解題的質(zhì)量及效率。
在進(jìn)行直線與方程的教學(xué)中,要重視過(guò)程教學(xué),不僅要重視公式的應(yīng)用,教師更要充分展示公式的背景,與學(xué)生一道經(jīng)歷公式的形成過(guò)程,同時(shí)在應(yīng)用中鞏固公式。在推導(dǎo)公式的過(guò)程中,要讓學(xué)生充分體驗(yàn)推導(dǎo)中所體現(xiàn)的數(shù)學(xué)思想、方法,從中學(xué)會(huì)學(xué)習(xí),樂(lè)于學(xué)習(xí)。應(yīng)該說(shuō),自己在教學(xué)過(guò)程
中也是遵循上述思路開(kāi)展教學(xué)的,而且也取得了一定的效果。下面談一下對(duì)直線與方程的教學(xué)反思:
(1)教學(xué)目標(biāo)與要求的反思:
基本上達(dá)到了預(yù)定教學(xué)的目標(biāo),由于個(gè)別學(xué)生基礎(chǔ)較差,沒(méi)有達(dá)到教學(xué)目標(biāo)與要求,課后要對(duì)他們進(jìn)行個(gè)別輔導(dǎo)。
(2)教學(xué)過(guò)程的反思:
通過(guò)問(wèn)題引入,從簡(jiǎn)單到復(fù)雜,由特殊到一般思維方法,讓學(xué)生參與到教學(xué)中去,學(xué)生的積極性很高,但師生互動(dòng)與溝通缺少一點(diǎn)默契,尤其基礎(chǔ)較差的學(xué)生,有待以后不斷改進(jìn)。
(3)教學(xué)結(jié)果的反思:
基本上達(dá)到了預(yù)定教學(xué)的效果,通過(guò)數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生能提出問(wèn)題和解決問(wèn)題的思維方式,學(xué)會(huì)反思,從而提高學(xué)生綜合解題的能力。
《直線的參數(shù)方程》教學(xué)反思 4
關(guān)于“直線的傾斜角和斜率“的教學(xué)設(shè)計(jì)花了我很長(zhǎng)的時(shí)間,設(shè)計(jì)了多個(gè)方案,想在”傾斜角“和”斜率“的概念形成方面給予同學(xué)更多的空間,也用幾何畫(huà)板做了幾個(gè)課件,但覺(jué)得不是非常理想,以至于到了上課的時(shí)間仍舊沒(méi)有滿(mǎn)意的結(jié)果。但由于備課的時(shí)間還是非常的充分的,上課還是比較游刃有余的。但上是上了,感覺(jué)還是有點(diǎn)不爽。 其一,對(duì)”傾斜角“概念的形成過(guò)程的'教學(xué)過(guò)程中,發(fā)現(xiàn)所教2個(gè)班在表達(dá)能力上的區(qū)別還是比較明顯的,當(dāng)問(wèn)到”經(jīng)過(guò)一個(gè)定點(diǎn)的直線有什么聯(lián)系和區(qū)別時(shí)?”在10班所花的時(shí)間明顯要比重點(diǎn)班多,但這也表明自己的問(wèn)題設(shè)計(jì)還缺乏針對(duì)性。如果按照“平面上任意一點(diǎn)--->做直線(3條以上)---->說(shuō)明區(qū)別和聯(lián)系--->加上直角坐標(biāo)系---->說(shuō)明區(qū)別和聯(lián)系”的順序來(lái)設(shè)計(jì)問(wèn)題,回答起來(lái)可能難度更低一點(diǎn),同時(shí)也更加突出直角坐標(biāo)系的作用。
其二,對(duì)通過(guò)的直線的斜率的求解教學(xué),通過(guò)給出實(shí)際問(wèn)題,引出疑問(wèn)引起大家的思考的方式會(huì)更加自然一些。比如,一開(kāi)始便推出“比較過(guò)點(diǎn)A(1,1),B(3,4)的直線和通過(guò)點(diǎn)A(1,1),C(3,4.1)的直線”的斜率的大小”,然后得到直觀的感受:直線的斜率和直線上任意兩個(gè)點(diǎn)的坐標(biāo)有關(guān)系。再推導(dǎo)本問(wèn)題中的兩條直線的斜率公式,最后得到一般的公式。
其三,”不是所有的直線都有斜率”以及斜率公式具備特定前提條件,在學(xué)習(xí)之處,要指出,但不要過(guò)分強(qiáng)調(diào),更符合學(xué)生的認(rèn)知規(guī)律,使學(xué)生的知識(shí)結(jié)構(gòu)能夠逐步完善,知識(shí)能力螺旋上升。
【《直線的參數(shù)方程》教學(xué)反思】相關(guān)文章:
直線與方程教學(xué)反思03-25
直線的方程教學(xué)反思03-27
直線的方程教學(xué)反思14篇03-27
方程教學(xué)反思03-28
《方程》教學(xué)反思03-16
直線射線線段教學(xué)反思04-22
直線、射線、線段教學(xué)反思04-05
線段射線直線的教學(xué)反思02-11
直線射線線段教學(xué)反思06-20