(精)高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9篇
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書面材料,通過它可以全面地、系統(tǒng)地了解以往的學(xué)習(xí)和工作情況,因此我們要做好歸納,寫好總結(jié)?偨Y(jié)怎么寫才不會(huì)流于形式呢?下面是小編為大家整理的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
數(shù)學(xué)歸納法的基本步驟
一般地,證明一個(gè)與自然數(shù)n有關(guān)的命題P(n),有如下步驟:
。1)證明當(dāng)n取第一個(gè)值n0時(shí)命題成立。n0對(duì)于一般數(shù)列取值為0或1,但也有特殊情況;
。2)假設(shè)當(dāng)n=k(k≥n0,k為自然數(shù))時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立。
綜合(1)(2),對(duì)一切自然數(shù)n(≥n0),命題P(n)都成立。
第二數(shù)學(xué)歸納法
數(shù)學(xué)歸納法的基本步驟:
對(duì)于某個(gè)與自然數(shù)有關(guān)的.命題P(n),(1)驗(yàn)證n=n0時(shí)P(n)成立;
。2)假設(shè)n0≤n 綜合(1)(2),對(duì)一切自然數(shù)n(≥n0),命題P(n)都成立。 倒推歸納法(反向歸納法) 。1)驗(yàn)證對(duì)于無窮多個(gè)自然數(shù)n命題P(n)成立(無窮多個(gè)自然數(shù)可以是一個(gè)無窮數(shù)列中的數(shù),如對(duì)于算術(shù)幾何不等式的證明,可以是2^k,k≥1); 。2)假設(shè)P(k+1)(k≥n0)成立,并在此基礎(chǔ)上,推出P(k)成立,綜合(1)(2),對(duì)一切自然數(shù)n(≥n0),命題P(n)都成立; 螺旋式歸納法 對(duì)兩個(gè)與自然數(shù)有關(guān)的命題P(n),Q(n),(1)驗(yàn)證n=n0時(shí)P(n)成立; (2)假設(shè)P(k)(k>n0)成立,能推出Q(k)成立,假設(shè) Q(k)成立,能推出 P(k+1)成立;綜合(1)(2),對(duì)一切自然數(shù)n(≥n0),P(n),Q(n)都成立。 數(shù)學(xué)歸納法:數(shù)學(xué)上證明與自然數(shù)N有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來證明等式成立和數(shù)列通項(xiàng)公式成立。 1.求函數(shù)的單調(diào)性: 利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。 利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。 反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間); (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間); 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。 2.求函數(shù)的極值: 設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。 可導(dǎo)函數(shù)的`極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是: 。1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況: 。4)檢查f(x)的符號(hào)并由表格判斷極值。 3、求函數(shù)的值與最小值: 如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。 求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值; 。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。 4.解決不等式的有關(guān)問題: 。1)不等式恒成立問題(絕對(duì)不等式問題)可考慮值域。 f(x)(xA)的值域是[a,b]時(shí),不等式f(x)0恒成立的充要條件是f(x)max0,即b0; 不等式f(x)0恒成立的充要條件是f(x)min0,即a0. f(x)(xA)的值域是(a,b)時(shí),不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0. 。2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0. 5.導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用: 實(shí)際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說明。 (一)導(dǎo)數(shù)第一定義 設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f'(x0) ,即導(dǎo)數(shù)第一定義 (二)導(dǎo)數(shù)第二定義 設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f'(x0) ,即 導(dǎo)數(shù)第二定義 (三)導(dǎo)函數(shù)與導(dǎo)數(shù) 如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時(shí)函數(shù) y = f(x) 對(duì)于區(qū)間 I 內(nèi)的每一個(gè)確定的 x 值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù) y = f(x) 的.導(dǎo)函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。 (四)單調(diào)性及其應(yīng)用 1、利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟 (1)求f(x) 。2)確定f(x)在(a,b)內(nèi)符號(hào) (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù) 2、用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟 。1)求f(x) (2)f(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間 學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識(shí)點(diǎn),接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。 1、萬能公式令tan(a/2)=tsina=2t /(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2) 2、輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a 3、三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1、單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a| 2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(hào)(x平方+y平方) 3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方] 4、向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(hào)(x1平方+y1平方)_根號(hào)(x2平方+y2平方) 5、空間向量:同上推論(提示:向量a={x,y,z}) 6、充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2 7、|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方 1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。 2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。 3、a—邊長(zhǎng),S=6a2,V=a3。 4、長(zhǎng)方體a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc。 5、棱柱S—h—高V=Sh。 6、棱錐S—h—高V=Sh/3。 7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。 8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。 9、圓柱r—底半徑,h—高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h。 10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)。 11、r—底半徑h—高V=πr^2h/3。 12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。 14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。 15、球臺(tái)r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。 16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。 17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)。 空間兩條直線只有三種位置關(guān)系:平行、相交、異面 1、按是否共面可分為兩類: 。1)共面:平行、相交 (2)異面: 異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。 異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。 兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法 兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法 2、若從有無公共點(diǎn)的角度看可分為兩類: (1)有且僅有一個(gè)公共點(diǎn)——相交直線; (2)沒有公共點(diǎn)——平行或異面 直線和平面的位置關(guān)系: 直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行 、僦本在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn) 、谥本和平面相交——有且只有一個(gè)公共點(diǎn) 直線與平面所成的'角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。 集合與簡(jiǎn)單邏輯:5分或不考 函數(shù):高考60分:①、指數(shù)函數(shù)②對(duì)數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點(diǎn)) 平面向量與解三角形 立體幾何:22分左右 不等式:(線性規(guī)則)5分必考 數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題 平面解析幾何:(30分左右) 計(jì)算原理:10分左右 概率統(tǒng)計(jì):12分----17分 復(fù)數(shù):5分 等比數(shù)列公式性質(zhì)知識(shí)點(diǎn) 1、等比數(shù)列的有關(guān)概念 。1)定義: 如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為an+1/an=q(n∈NX,q為非零常數(shù))。 。2)等比中項(xiàng): 如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。即:G是a與b的等比中項(xiàng)a,G,b成等比數(shù)列G2=ab. 2、等比數(shù)列的有關(guān)公式 。1)通項(xiàng)公式:an=a1qn-1. 3、等比數(shù)列{an}的常用性質(zhì) (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈NX),則am·an=ap·aq=a. 特別地,a1an=a2an-1=a3an-2=…。 (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時(shí)q≠-1);an=amqn-m. 4、等比數(shù)列的特征 (1)從等比數(shù)列的定義看,等比數(shù)列的`任意項(xiàng)都是非零的,公比q也是非零常數(shù)。 。2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0. 5、等比數(shù)列的前n項(xiàng)和Sn 。1)等比數(shù)列的前n項(xiàng)和Sn是用錯(cuò)位相減法求得的,注意這種思想方法在數(shù)列求和中的運(yùn)用。 (2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤。 等比數(shù)列知識(shí)點(diǎn) 1、等比中項(xiàng) 如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。 有關(guān)系: 注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。 2、等比數(shù)列通項(xiàng)公式 an=a1Xq’(n-1)(其中首項(xiàng)是a1,公比是q) an=Sn-S(n-1)(n≥2) 前n項(xiàng)和 當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為 Sn=a1(1-q’n)/(1-q)=(a1-a1Xq’n)/(1-q)(q≠1) 當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為 Sn=na1 3、等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系 an=a1=s1(n=1) an=sn-s(n-1)(n≥2) 4、等比數(shù)列性質(zhì) (1)若m、n、p、q∈NX,且m+n=p+q,則am·an=ap·aq; 。2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。 。3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} 。4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。 記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。 。5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q) (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m) 。7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。 注意:上述公式中a’n表示a的n次方。 一、集合有關(guān)概念 1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。 2、集合的中元素的三個(gè)特性: 1)元素的確定性; 2)元素的互異性; 3)元素的無序性。 說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。 。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。 。3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。 3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋} 1)用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}。 2)集合的表示方法:列舉法與描述法。 注意啊:常用數(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R 關(guān)于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。 列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。 ①語言描述法:例:{不是直角三角形的三角形} 、跀(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2} 4、集合的分類: 1)有限集含有有限個(gè)元素的集合。 2)無限集含有無限個(gè)元素的集合。 3)空集不含任何元素的集合例:{x|x2=—5}。 二、集合間的基本關(guān)系 1、“包含”關(guān)系子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。 2、“相等”關(guān)系(5≥5,且5≤5,則5=5) 實(shí)例:設(shè)A={x|x2—1=0}B={—11}“元素相同” 結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的.元素,我們就說集合A等于集合B,即:A=B。 、偃魏我粋(gè)集合是它本身的子集。AA 、谡孀蛹喝绻鸄?B且A?B那就說集合A是集合B的真子集,記作AB(或BA) 、廴绻鸄BBC那么AC ④如果AB同時(shí)BA那么A=B 3、不含任何元素的集合叫做空集,記為Φ。 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的運(yùn)算 1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。 2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。 3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。 4、全集與補(bǔ)集 。1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集) 記作:CSA即CSA={x?x?S且x?A}。 (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。 。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。 【高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)08-30 高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)04-10 高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié)05-10 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-15 高中數(shù)學(xué)基本的知識(shí)點(diǎn)總結(jié)05-17 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[精選]06-09 高中數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)07-22 高中數(shù)學(xué)統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)10-21高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9