當(dāng)前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中二年級數(shù)學(xué)知識點(diǎn)

高中二年級數(shù)學(xué)知識點(diǎn)

時間:2024-09-03 16:42:47 高中數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

高中二年級數(shù)學(xué)知識點(diǎn)

  在學(xué)習(xí)中,大家都沒少背知識點(diǎn)吧?知識點(diǎn)就是學(xué)習(xí)的重點(diǎn)。為了幫助大家掌握重要知識點(diǎn),下面是小編精心整理的高中二年級數(shù)學(xué)知識點(diǎn),希望能夠幫助到大家。

高中二年級數(shù)學(xué)知識點(diǎn)

高中二年級數(shù)學(xué)知識點(diǎn)1

  一、隨機(jī)事件

  主要掌握(三四五)

  (1)事件的三操作:和(和)、交(積)、差;注意差異A-B可表示為A和B的逆的積。

  (2)交換律、結(jié)合律、分配律、德莫根律四種運(yùn)算律。

  (3)事件的五種關(guān)系:包括、等待、互斥(不相容)、對立、獨(dú)立。

  二、概率定義

  (1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個數(shù)字附近,稱為事件概率;(2)古典定義:要求樣本空間只有有限的基本事件,每個基本事件的可能性相等,那么事件A中包含的基本事件數(shù)與樣本空間中包含的基本事件數(shù)之比就稱為事件的古典概率;

  (3)幾何概率:樣本空間中有無限多個元素,每個元素出現(xiàn)的可能性相等,樣本空間可以看作是幾何圖形,事件A可以看作是該圖形的子集,其概率可以通過子集圖形的大小與樣本空間圖形的`大小之比來計(jì)算;

  (4)公理化定義:從樣本空間的子集到[0,1]的映射符合三個公理的要求。

  三、概率性質(zhì)和公式

  (1)加法公式:P(A B)=p(A) P(B)-P(AB),特別是,如果A和B不相容,則P(A B)=P(A) P(B);

  (2)差:P(A-B)=P(A)-P(AB),特別是,如果B包含在內(nèi)A,則P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別是,如果A和B彼此獨(dú)立,則P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由于因果,貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).因果索因;

  如果事件B可以在多種情況下(原因)A1,A2,...,An如果發(fā)生,用全概率公式要求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj貝葉斯公式引起的概率.

  (5)兩個概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,...,n.一個問題可以看作是n重貝努力試驗(yàn)(三個條件:n重復(fù)一次,每次只有A和A當(dāng)可能發(fā)生逆轉(zhuǎn)時,每個測試結(jié)果都是獨(dú)立的應(yīng)考慮兩個概率公式.

高中二年級數(shù)學(xué)知識點(diǎn)2

  一、性質(zhì)不等式

  1.兩個實(shí)數(shù)a和b大小關(guān)系

  2.性質(zhì)不等式

  (4)(乘法單調(diào)性)

  3.絕對值不等式的性質(zhì)

  (2)如果a>0,那么

  (3)|a?b|=|a|?|b|.

  (5)|a|-|b|≤|a±b|≤|a| |b|.

  (6)|a1 a2 …… an|≤|a1| |a2| …… |an|.

  二、不等式證明

  1.不等式證明的依據(jù)

  (2)不等式性質(zhì)(略)

  (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

  ②a2 b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)

  2.不等式的證明方法

  (1)比較法:證明a>b(a0(a-b<0)這種證明不等式的方法稱為比較法.

  用比較法證明不等式的步驟是:差異-變形-判斷符號.

 。2)綜合法:從已知條件出發(fā),根據(jù)不等式的性質(zhì)和已證明的不等式,推導(dǎo)出要證明的不等式的建立。這種證明不等式的方法稱為綜合法.

  (3)分析方法:從欲望證據(jù)的不等式開始,逐步分析使不等式建立的充分條件,直到所需條件判斷正確,從而確定原始不等式建立。這種證明不等式的方法稱為分析方法.

  除上述三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

  三、解不等式

  1.解決不等式問題的分類

  (1)解一元一次不等.

  (2)解一元二次不等.

  (3)可化為一元一次或一元二次不等式的不等式.

 、俳庖辉叽尾坏仁;

 、诮夥植坏仁;

 、劢鉄o理不等式;

 、芙庵笖(shù)不等式;

  ⑤解對數(shù)不等式;

  ⑥解帶絕對值的不等式;

  ⑦解不等式組.

  2.解不等式時應(yīng)特別注意以下幾點(diǎn):

  (1)正確應(yīng)用不等式的'基本性質(zhì).

  (2)正確應(yīng)用功率函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增減.

  (3)注意代數(shù)式中未知數(shù)的值范圍.

  3.不等式同解

  (5)|f(x)|0)

  (6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.

  (9)當(dāng)a>1時,af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0ag(x)與f(x)

  四、不等式

  解不等式的方法,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。

  高次向低代,一步一步轉(zhuǎn)換要等價(jià)。數(shù)字之間的相互轉(zhuǎn)換有助于回答。

  證不等式的方法,實(shí)數(shù)性質(zhì)強(qiáng)大。求差與0比大小,作者與1競爭。

  分析直接困難,思路清晰,綜合法。非負(fù)常用的基本風(fēng)格,正面難則反證法。

  還有重要的不等式和數(shù)學(xué)歸納法。圖形函數(shù)有助于繪圖和建模。

  五、立體幾何

  點(diǎn)、線、面三位一體,柱錐臺球?yàn)榇。距離從點(diǎn)開始,角度是線。

  垂直平行是證明概念必須澄清的關(guān)鍵。線、線、面、三對循環(huán)。

  方程思想的整體要求,化歸意識動割補(bǔ)。計(jì)算前必須證明,畫出移出的圖形。

  垂線和平面常用于三維幾何輔助線。射影的概念很重要,解決問題最重要。

  異面直線二面角,體積射影公式活。三垂線的公理性質(zhì),解決了很多問題。

  六、平面分析幾何

  有直線圓向線段,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)結(jié)合稱為典范。

  笛卡爾的觀點(diǎn)是對的,點(diǎn)和有序的實(shí)數(shù)對,兩者對應(yīng),創(chuàng)造新的幾何方法。

  兩種思想相得益彰,化為思想打前陣;都說待定系數(shù)法,其實(shí)是方程組思想。

  三種類型集成,畫曲線求方程,給方程曲線,判斷曲線位置關(guān)系。

  四種工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟失,轉(zhuǎn)換復(fù)數(shù)。

  分析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)是數(shù)形學(xué)

  七、排列、組合、二項(xiàng)定理

  加法乘法的兩個原則貫穿于一貫的規(guī)則。與順序無關(guān)是組合,要求有序是排列。

  兩個公式,兩個性質(zhì),兩個思想和方法?偨Y(jié)排列組合,轉(zhuǎn)化應(yīng)用問題。

  排列組合在一起,先選后排是常識。首先要多考慮特殊元素和位置。

  不重不漏多想,捆綁插空是技巧。排列組合恒等式,定義證明建模試驗(yàn)。

  中國楊輝三角形是關(guān)于二項(xiàng)定理的。兩個性質(zhì)和兩個公式,函數(shù)賦值變換。

  八、復(fù)數(shù)

  虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。復(fù)數(shù)一對數(shù),橫縱坐標(biāo)實(shí)虛部。

  與復(fù)平面上點(diǎn)相對應(yīng),原點(diǎn)與之連成箭。箭桿與X軸正向,成為輻角。

  箭桿的長度是模型,經(jīng)常結(jié)合數(shù)形。代數(shù)幾何三角形,相互轉(zhuǎn)換試試。

  代數(shù)運(yùn)算的本質(zhì)是i多項(xiàng)運(yùn)算。i正整數(shù)次慕,四個數(shù)值周期現(xiàn)在。

  一些重要的結(jié)論,熟記和使用結(jié)果。虛實(shí)互化能力大,復(fù)數(shù)相等。

  使用方程思想解決方案,注意整體替換。在幾何圖中,加法平行于四邊形,減法三角法則判斷;乘法除法運(yùn)算,逆向旋轉(zhuǎn),全年模長伸縮。

  三角形運(yùn)算,必須對輻角進(jìn)行模分。使用迪莫弗公式,乘方開方非常方便。

  輻角運(yùn)算很奇怪,和差是由積商得來的。四種性質(zhì)是不可分割的,相等的和模共軛,兩者不是實(shí)數(shù),比較大小不是。復(fù)數(shù)實(shí)數(shù)非常密切,要注意本質(zhì)區(qū)別。

  平方關(guān)系:

  sin^2α cos^2α=1

  1 tan^2α=sec^2α

  1 cot^2α=csc^2α

  積的關(guān)系:

  sinα=tanα×cosα

  cosα=cotα×sinα

  tanα=sinα×secα

  cotα=cosα×cscα

  secα=tanα×cscα

  cscα=secα×cotα

  倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關(guān)系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  直角三角形ABC中,角A的正弦值等于角A的對邊比斜邊,余弦等于角等于角A的斜邊

  正切等于對邊比鄰邊,[1]三角函數(shù)恒等變形公式

  三角函數(shù)的兩角和差:

  cos(α β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α β)=(tanα tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1 tanα·tanβ)

  三角和三角函數(shù):

  sin(α β γ)=sinα·cosβ·cosγ cosα·sinβ·cosγ cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α β γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α β γ)=(tanα tanβ tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  輔助角公式:

  Asinα Bcosα=(A2 B2)^(1/2)sin(α t),其中

  sint=B/(A2 B2)^(1/2)

  cost=A/(A2 B2)^(1/2)

  tant=B/A

  Asinα-Bcosα=(A2 B2)^(1/2)cos(α-t),tant=A/B

  倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα cotα)

  cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

  tan(2α)=2tanα/[1-tan2(α)]

  三角公式:

  sin(3α)=3sinα-4sin3(α)=4sinα·sin(60 α)sin(60-α)

  cos(3α)=4cos3(α)-3cosα=4cosα·cos(60 α)cos(60-α)

  tan(3α)=tana·tan(π/3 a)·tan(π/3-a)

  半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1 cosα)/2)

  tan(α/2)=±√((1-cosα)/(1 cosα))=sinα/(1 cosα)=(1-cosα)/sinα

  降冪公式

  sin2(α)=(1-cos(2α))/2=versin(2α)/2

  cos2(α)=(1 cos(2α))/2=covers(2α)/2

  tan2(α)=(1-cos(2α))/(1 cos(2α))

  萬能公式:

  sinα=2tan(α/2)/[1 tan2(α/2)]

  cosα=[1-tan2(α/2)]/[1 tan2(α/2)]

  tanα=2tan(α/2)/[1-tan2(α/2)]

  積化與差公式:

  sinα·cosβ=(1/2)[sin(α β) sin(α-β)]

  cosα·sinβ=(1/2)[sin(α β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α β) cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α β)-cos(α-β)]

  和差化積公式:

  sinα sinβ=2sin[(α β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α β)/2]sin[(α-β)/2]

  cosα cosβ=2cos[(α β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α β)/2]sin[(α-β)/2]

  推導(dǎo)公式

  tanα cotα=2/sin2α

  tanα-cotα=-2cot2α

  1 cos2α=2cos2α

  1-cos2α=2sin2α

  1 sinα=(sinα/2 cosα/2)2

高中二年級數(shù)學(xué)知識點(diǎn)3

  1.輾轉(zhuǎn)相除法是尋求公約數(shù)的一種方法。這種算法是歐幾里得在公元前年左右提出的,因此也被稱為歐幾里得算法.

  2.所謂輾轉(zhuǎn)相法,就是用較大的數(shù)字除以給定的兩個數(shù)字較小的數(shù)字.如果余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的'一對數(shù),繼續(xù)上述除法,直到大數(shù)被小數(shù)除法,則此時的除數(shù)為原兩個數(shù)的公約數(shù).

  3.更相減損是一種尋求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩個數(shù)字,用較大的數(shù)字減去較小的數(shù)字,然后將收益差與較小的數(shù)字進(jìn)行比較,并用較大的數(shù)字減少數(shù)字,繼續(xù)操作,直到收益數(shù)相等,這個數(shù)字是所需的公約數(shù).

  4.秦九韶算法是一種計(jì)算一元二次多項(xiàng)值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.進(jìn)位系統(tǒng)是人們?yōu)榉奖阌?jì)數(shù)和操作而約定的記數(shù)系統(tǒng).滿進(jìn)一是k進(jìn)制,進(jìn)制的基數(shù)是k.

  7.將進(jìn)制數(shù)化為十進(jìn)制數(shù)的方法是先將進(jìn)制數(shù)寫成數(shù)字與k的乘積之和,然后根據(jù)十進(jìn)制數(shù)的計(jì)算規(guī)則計(jì)算結(jié)果.

  8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:k取余法.也就是說,用k連續(xù)去除十進(jìn)制數(shù)或收入的商,直到商為零,然后將每次收入的余數(shù)排成一個數(shù),即相應(yīng)的進(jìn)制數(shù).

高中二年級數(shù)學(xué)知識點(diǎn)4

  第一章算法初步

  算法的概念

  算法的特點(diǎn)

  (1)有限性:

  算法的步驟序列是有限的,必須在有限的操作后停止,而不是無限的

  (2)確定性:

  算法中的每一步都應(yīng)該是確定的,并且可以有效地執(zhí)行和獲得確定的結(jié)果,而不是是模棱兩可.

  (3)順序性和正確性:

  算法從初始步驟開始,分為幾個明確的步驟,每個步驟只有一個確定的后續(xù)步驟,前一步是后一步的前提,下一步只能執(zhí)行前一步,每一步一步驟準(zhǔn)確,完成問題.

  (4)不唯一性:

  解決某個問題的方法不一定是唯一的,對于一個問題可以有不同的算法.

  (5)普遍性:

  可以設(shè)計(jì)合理的算法來解決許多具體問題,如心算和計(jì)算器計(jì)算解決有限、事先設(shè)計(jì)的步驟.

  程序框圖

  1.程序框圖的基本概念:

  (一)程序構(gòu)圖概念:程序框圖,又稱流程圖,是一種使用規(guī)定的圖形、指向線和文字描述的方法算法圖形表示準(zhǔn)確直觀。

  程序框圖包括以下部分:

  1.表示相應(yīng)操作的程序框;

  2.帶箭頭的流程線;

  3.程序框外

  4.必要的文字說明。

  (二)構(gòu)成程序框的圖形符號及其作用

  規(guī)則如下:

  1.使用標(biāo)準(zhǔn)圖形符號。

  2.框圖一般從上到下,從左到右繪制。

  3.除了判斷框,大多數(shù)流程圖符號只有一個進(jìn)入點(diǎn)和一個退出點(diǎn)。判斷框有一個以上的退出點(diǎn)出點(diǎn)的唯一符號。

  4.判斷框分為兩類,一類判斷框是和否兩個分支,只有兩個結(jié)果;另一種是多分支判斷,有幾個不同的結(jié)果。

  5.圖形符號中描述的語言應(yīng)非常簡潔清晰。

  三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。

  #FormatImgID_0# 1.順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的`算法結(jié)構(gòu)。語句、框架和框架按自上而下的順序進(jìn)行。它由幾個依次執(zhí)行的處理步驟組成。它是任何算法都離不開的基本算法結(jié)構(gòu)。

  程序框中順序結(jié)構(gòu)的體現(xiàn)是利用流程線將程序框自上而上

  下地連接,按順序執(zhí)行算法步驟。例如,在示意圖中,A框和B

  框架依次執(zhí)行。只有在執(zhí)行A框指定的操作后,才能執(zhí)行

  B框指定的操作。

  二、條件結(jié)構(gòu):

  條件結(jié)構(gòu)是指根據(jù)條件是否確定,在算法中選擇不同流向的算法結(jié)構(gòu)建。選擇執(zhí)行A框或B框的條件P是否成立。無論P(yáng)條件是否成立,只能執(zhí)行A框或B框B A框和B框不可能同時執(zhí)行,A框也不可能執(zhí)行,B不執(zhí)行框架。一個判斷結(jié)構(gòu)是可行的。有多個判斷框。

  三、循環(huán)結(jié)構(gòu):

  在某些算法中,經(jīng)常會出現(xiàn)從某個地方開始,根據(jù)某些條件反復(fù)執(zhí)行某個處理步驟,這就是循環(huán)結(jié)構(gòu)重復(fù)執(zhí)行的處理步驟是循環(huán)結(jié)構(gòu)。顯然,條件結(jié)構(gòu)必須包含在循環(huán)結(jié)構(gòu)中。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu)。

  循環(huán)結(jié)構(gòu)可分為兩類:

  (1)當(dāng)型循環(huán)結(jié)構(gòu)

  如下左圖所示,其功能是在給定條件P建立時執(zhí)行A框,A框架執(zhí)行后,判斷條件P是否建立。如果仍然建立,則執(zhí)行A框,然后重復(fù)執(zhí)行A框,直到某個條件P不建立。此時,將不再執(zhí)行A框,并離開循環(huán)結(jié)構(gòu)。

  (2)另一種是直到型循環(huán)結(jié)構(gòu)

  如下右圖所示,其功能是先執(zhí)行,然后判斷給定條件P是否成立。如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到給定條件P成立。此時,A框?qū)⒉辉賵?zhí)行,并離開循環(huán)結(jié)構(gòu)。

  當(dāng)型循環(huán)結(jié)構(gòu)直到型循環(huán)結(jié)構(gòu)

  輸入、輸出和賦值句

  賦值語句

  (1)賦值句的一般格式

  (2)賦值語句的作用是將表達(dá)式所代表的值賦予變量;

  (3)賦值語句中的=稱為賦值號,不同于數(shù)學(xué)中等號的含義。賦值號的左右兩個側(cè)面不能對換,賦值號右側(cè)的表達(dá)值給賦值號左側(cè)的變量;

  (4)賦值語句左側(cè)只能是變量名,而不是表達(dá)式,右側(cè)可以是數(shù)據(jù)、常量或算式;

  (5)一個變量可以多次賦值。

  注意:

 、儋x值號左側(cè)只能是變量名,不能是表達(dá)式。例如:2=X是錯誤的。

 、谫x值號左右不能對換。A=B”“B=A意思操作結(jié)果不同。

 、圪x值語句不能用于代數(shù)計(jì)算。(如簡化、因式分解、解方程等。

 、苜x值號“=與數(shù)學(xué)中的等號意義不同。

  注意:

  在IF—THEN—ELSE在句子中,條件表示判斷條件,句子1表示滿足條件時執(zhí)行的操作內(nèi)容;句子2表示不符合條件時執(zhí)行的操作內(nèi)容;END IF表示條件句的結(jié)束。在執(zhí)行計(jì)算機(jī)時,首先是對的IF判斷后續(xù)條件,符合條件的,執(zhí)行THEN后面的句子1;條件不符合的,執(zhí)行ELSE后句2。

【高中二年級數(shù)學(xué)知識點(diǎn)】相關(guān)文章:

高中概率數(shù)學(xué)知識點(diǎn) 高中數(shù)學(xué)概率總結(jié)04-06

高中數(shù)學(xué)必修知識點(diǎn)11-08

高中數(shù)學(xué)知識點(diǎn)11-03

高中數(shù)學(xué)知識點(diǎn)07-25

高中數(shù)學(xué)必考知識點(diǎn)07-02

愛在高中數(shù)學(xué)知識點(diǎn)01-15

高中數(shù)學(xué)統(tǒng)計(jì)知識點(diǎn)總結(jié)10-21

高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)04-10

高中數(shù)學(xué)知識點(diǎn)總結(jié)[精選]06-09