初中數學知識點總結(熱門)
總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,他能夠提升我們的書面表達能力,讓我們一起來學習寫總結吧。那么你真的懂得怎么寫總結嗎?以下是小編為大家整理的初中數學知識點總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數學知識點總結1
k0時,y隨x的增大而減小,直線一定過二、四象限(3)若直線l1:yk1xb1l2:yk2xb2
當k1k2時,l1//l2;當b1b2b時,l1與l2交于(0,b)點。
。4)當b>0時直線與y軸交于原點上方;當b學大教育
(1)是中心對稱圖形,對中稱心是原點(2)對稱性:是軸直線yx和yx(2)是軸對稱圖形,對稱k0時兩支曲線分別位于一、三象限且每一象限內y隨x的增大而減小(3)
k0時兩支曲線分別位于二、四象限且每一象限內y隨x的增大而增大(4)過圖象上任一點作x軸與y軸的垂線與坐標軸構成的矩形面積為|k|。
P(1)應用在u3.應用(2)應用在(3)其它F上SS上t其要點是會進行“數結形合”來解決問題二、二次函數
1.定義:應注意的問題
。1)在表達式y(tǒng)=ax2+bx+c中(a、b、c為常數且a≠0)(2)二次項指數一定為22.圖象:拋物線
3.圖象的性質:分五種情況可用表格來說明表達式(1)y=ax2頂點坐標對稱軸(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線x=0(y軸)①若a>0,則x=0時,若a>0,則x>0時,y②若a0,則x=0時,①若a>0,則x>0時,y②若a0,則x=h時,①若a>0,則x>h時,y②若a學大教育
表達式h)2+k頂點坐標對稱軸直線x=h最大(。┲祔最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時,①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時,①若a>0,則x>h時,y②若a0,則x=4acb24ay最小=4acb24ab時,y隨x的增大而增大時,②若a2a2a時,y隨x的增大而減小b②若a學大教育
一次函數圖象和性質
【知識梳理】
1.正比例函數的一般形式是y=kx(k≠0),一次函數的一般形式是y=kx+b(k≠0).2.一次函數ykxb的圖象是經過(3.一次函數ykxb的圖象與性質
圖像的大致位置經過象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的增大性質而而而而
【思想方法】數形結合
k、b的符號k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點的一條直線.k反比例函數圖象和性質
【知識梳理】
1.反比例函數:一般地,如果兩個變量x、y之間的關系可以表示成y=或(k為常數,k≠0)的'形式,那么稱y是x的反比例函數.2.反比例函數的圖象和性質
k的符號k>0yoxk<0yox
圖像的大致位置經過象限性質
第象限在每一象限內,y隨x的增大而第象限在每一象限內,y隨x的增大而3.k的幾何含義:反比例函數y=的幾何意義,即過雙曲線y=
k(k≠0)中比例系數kxk(k≠0)上任意一點P作x4
x軸、y軸垂線,設垂足分別為A、B,則所得矩形OAPB
函數學習方法學大教育
的面積為.
【思想方法】數形結合
二次函數圖象和性質
【知識梳理】
1.二次函數ya(xh)2k的圖像和性質
圖象開口對稱軸頂點坐標最值增減性
在對稱軸左側在對稱軸右側當x=時,y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當x=時,y有最值y隨x的增大而y隨x的增大而銳角三角函數
【思想方法】
1.常用解題方法設k法2.常用基本圖形雙直角
【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=
14,則tanB=______;(2)若cosA=,則tanB=______.255
函數學習方法學大教育
例題2.(1)已知:cosα=
23,則銳角α的取值范圍是()A.0°
初中數學知識點總結2
一、函數及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
二、相交線與平行線
1、知識網絡結構
2、知識要點
。1)在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
。2)在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
。3)兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是
鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,
與互為鄰補角。+=180°;+=180°;+=180°;+=180°。
3、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的`反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=; =。
4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當a⊥b時,====90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
5、同位角、內錯角、同旁內角基本特征:
在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。
在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。
在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。
三、實數
1、實數的分類
。1)按定義分類:
。2)按性質符號分類:
注:0既不是正數也不是負數.
2、實數的相關概念
。1)相反數
①代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
、趲缀我饬x:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
③互為相反數的兩個數之和等于0.a、b互為相反數a+b=0.
。2)絕對值|a|≥0.
。3)倒數(1)0沒有倒數(2)乘積是1的兩個數互為倒數.a、b互為倒數.
(4)平方根
、偃绻粋數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
、谝粋正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作.
。5)立方根
如果x3=a,那么x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
3、實數與數軸
數軸定義:規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
4、實數大小的比較
(1)對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
(2)正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
(3)無理數的比較大。
初中數學知識點總結3
在初中數學課堂教學中,小結一般作為總結本課,開啟下一課的鑰匙。但是在具體執(zhí)行過程中,受到時間、學生心態(tài)、教師課堂設計水平等因素的限制,初中數學課堂小結在運用的過程中呈現出多種問題。究其原因是多方面的,而其最主要的原因則來源于教師對學生心理的把握力度不夠。心理學專家在當代少年兒童的大腦結構分析基礎上所做出的研究表明,在初中階段的學生對課程的關注度主要集中在前15分鐘,個別注意力比較好的學生能堅持到15~25分鐘,隨著時間的推移,從25分鐘到45分鐘之間學生的記憶力和注意力則出現了逐漸下滑的趨勢。由此可見,教師在做初中數學課程設計時,僅僅按照傳統(tǒng)習慣將課堂小結作為課末總結的方式并不科學,對學生的課堂學習和課下探索延伸起不到推動作用。
由此,在新的知識環(huán)節(jié)講解和學習的過程中,對課堂小結的設計,教師應該通過巧妙的規(guī)劃,實現溫故知新,而這又是對本堂課程的總結和反思的過程,具有極強的邏輯性和漸進性,環(huán)環(huán)相扣,同時要為學生的思考和課下探索的延伸留出獨立的空間。因此,按照具體的操作,本文以浙教版初中數學“探索多邊形的內角和”的課堂學習為例,對課堂小結的運用從以下兩個方面進行闡述。
一、撥迷梳“理”,溫故知新
七年級“探索多邊形的內角和”一課的教學重點是讓學生了解什么是多邊形、什么是內角、如何求內角和、如何在現實生活中利用此種計算方法。新課標要求,學生作為教學主體,對課程重點內容的了解和領悟主要是以他們自身的動手操作為主,這也是教師在教案設計時的主要切入點之一。在明確本堂課的教學重點之后,教師需要對以往學習過的知識點進行梳理,并找出與本堂課有關聯性的知識點,在課程初始時作為引導,通過對以往知識點的回顧,如三角形、相交線等已學知識點引出本堂課的重點。而后面即將學習的課程,如“多姿多彩幾何圖形”等的相應測試,也可以作為學生課堂及課后的延伸知識點,在教師的課程講解過程中予以貫穿。當然,在課程設計初期,教師要尤為注意的是,應根據本堂課知識點的重點排序,由主到輔、由簡入深地安排好具有節(jié)奏感的.講解內容及小結,而作為延伸思考的知識點在每個小結部分可以按照其相關性和重要性進行穿插安排。
二、動手操作,注重反思
“探索多邊形的內角和”中,多邊形的概念是本課各個難點展開的基礎,按照多邊形的概念,教師可以讓學生用線、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗多邊形的曲線美。引導學生嘗試以拉伸和縮小的方式構架出凹多邊形和凸多變形后,教師可以讓學生按照體驗來描述二者的區(qū)別和相同點,并以此作為小結。當學生做完歸納后,根據本課“多邊形的內角和主要以凸多邊形為主”的教學目標要求,教師可提問:“同學們目前已經了解了二者的區(qū)別,本堂課要講解的‘多邊形內角和’主要以凸多邊形為基礎,但是為什么我們不以凹多邊形為基礎呢?請同學們仔細想想原因。”教師的這種講解模式既可以為下面對“內角和”的重點講解作鋪墊,又可以讓學生深入思考之前對凹凸多邊形的描述是否恰當,是否符合多邊形的數學性規(guī)律。
在此種引導方法下,學生會按照下一個知識點的內容來反思之前的小結是否具有全面性。在反復的思考和對比過程中,學生的邏輯思維可以得到充分的訓練。這對培養(yǎng)學生的數學思維,以及對知識點的重復性推敲和反思能力的提升具有促進作用。一旦學生在思考和探討的過程中,摸索到數學本身的規(guī)律,并從復雜多樣的數學知識點中找到其原本的架構,自然會在頭腦中建立起一個符合自身記憶和領悟需要的數學知識體系。
三、大道從簡,循環(huán)漸進
大道從簡,按照初中數學的知識點架構來看,每堂課的每個知識點都可以在被重點提煉之后作為節(jié)點來布置課堂小結。以數學的邏輯思維傳承性為基礎,課堂上的下一個知識點就可以作為反思和推敲上一個小結的試金石,如此循環(huán)往復后,課末的最終知識點總結則對本課所有知識點小結進行有效的補充和完善,進而延伸出下堂課以及與本堂課重點內容相關的其他數學知識點的探索和思考。
當然,這種教學方法也同樣可以運用到其他學科的教學中。借助教師的漸進式誘導,學生會自主加入到課堂探索中,通過由簡到難、由淺入深的逐層遞進式反思和討論提升在課堂中的興趣度和專注度。
初中數學知識點總結4
一、重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數目。
5.眾數:一組數據中,出現次數最多的數據。
6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數)
二、計算方法
1.樣本平均數:⑴;⑵若,…,,則(a—常數,…,接近較整的常數a);⑶加權平均數:;⑷平均數是刻劃數據的集中趨勢(集中位置)的特征數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越準確。
2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數的較“整”的常數);若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數據的離散程度(波動大小)的特征數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標準差:
三、應用舉例(略)
初三數學知識點:第四章直線形
★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。
☆內容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯系
從“圖形”、“表示法”、“界限”、“端點個數”、“基本性質”等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(用“線段的基本性質”論證“三角形兩邊之和大于第三邊”)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質
10.平行線及判定與性質(互逆)(二者的區(qū)別與聯系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類:⑴按邊分;
、瓢唇欠
1.定義(包括內、外角)
2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中
3.三角形的主要線段
討論:①定義②x線的交點—三角形的×心③性質
、俑呔②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質
5.全等三角形
、乓话闳切稳鹊呐卸(sas、asa、aas、sss)
、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒
6.三角形的面積
⑴一般計算公式⑵性質:等底等高的三角形面積相等。
7.重要輔助線
⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
、胖苯幼C法:綜合法、分析法
、崎g接證法—反證法:①反設②歸謬③結論
、亲C線段相等、角相等常通過證三角形全等
、茸C線段倍分關系:加倍法、折半法
⑸證線段和差關系:延結法、截余法
、首C面積關系:將面積表示出來
三、四邊形
分類表:
1.一般性質(角)
、艃冉呛停360°
、祈槾芜B結各邊中點得平行四邊形。
推論1:順次連結對角線相等的.四邊形各邊中點得菱形。
推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。
⑶外角和:360°
2.特殊四邊形
、叛芯克鼈兊囊话惴椒:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定
、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
、葘蔷的紐帶作用:
3.對稱圖形
⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)
4.有關定理:①平行線等分線段定理及其推論1、2
、谌切巍⑻菪蔚闹形痪定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結頂點和對腰中點并延長與底邊相交”轉化為三角形。
6.作圖:任意等分線段。
初中數學知識點總結5
第十一章三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
2.三邊關系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.
3.高:從三角形的一個頂點向它的對邊所在直線作,頂點和間的線段叫做三角形的高.4.中線:在三角形中,連接一個頂點和它對邊的線段叫做三角形的中線.
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和之間的線段叫做三角形的角平分線.
6.三角形的穩(wěn)定性:三角形的形狀是,三角形的這個性質叫三角形的穩(wěn)定性.
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內角:多邊形兩邊組成的角叫做它的內角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的線組成的角叫做多邊形的外角.
10.多邊形的對角線:連接多邊形的兩個頂點的線段,叫做多邊形的對角線.
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質:
、湃切蔚膬冉呛停喝切蔚膬冉呛蜑槎。
、迫切瓮饨堑男再|:
性質1:三角形的一個外角等于和它不相鄰的的和.
性質2:三角形的一個外角大于任何一個和它的內角.
、嵌噙呅蝺冉呛凸剑簄邊形的內角和等于。
學無慮課后輔導中心編制
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.
、啥噙呅螌蔷的條數:
①從n邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形.
、趎邊形共有條對角線.
第十二章全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
、湃刃危耗軌蛲耆膬蓚圖形叫做全等形.
、迫热切危耗軌蛲耆膬蓚三角形叫做全等三角形.
、菍旤c:全等三角形中互相的頂點叫做對應頂點.
、葘叄喝热切沃谢ハ嗟倪吔凶鰧.
、蓪牵喝热切沃谢ハ嗟慕墙凶鰧.
2.基本性質:
、湃切蔚姆(wěn)定性:三角形三邊的確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩(wěn)定性.
、迫热切蔚男再|:全等三角形的相等,對應角相等.
3.全等三角形的判定定理:
、胚呥呥叄⊿SS):。
、七吔沁叄⊿AS):。
、墙沁吔牵ˋSA):。
、冉墙沁叄ˋAS):。
、尚边、直角邊(HL):。
4.角平分線:⑴畫法:⑵性質定理:角平分線上的點到角的兩邊的距離.⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的上.
5.證明的基本方法:
、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)⑵根據題意,畫出圖形,并用數字符號表示已知和求證.⑶經過分析,找出由已知推出求證的途徑,寫出證明過程.
第十三章軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相,這個圖形就叫做軸對稱圖形.
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱.⑶線段的垂直平分線:經過線段中點并且這條線段的直線,叫做這條線段的垂直平分線.
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:都相等的三角形叫做等邊三角形.2.基本性質:⑴對稱的性質:①不管是軸對稱圖形還是兩個圖形關于某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線.②對稱的圖形都全等.⑵線段垂直平分線的性質:①線段垂直平分線上的點與這條線段的距離相等.②與一條線段兩個端點距離相等的點在這條線段的上.⑶關于坐標軸對稱的點的.坐標性質①點P(x,y)關于x軸對稱的點的坐標為P"(,).②點P(x,y)關于y軸對稱的點的坐標為P"(,).⑷等腰三角形的性質:
①等腰三角形兩腰.
、诘妊切蝺傻捉窍嗟龋ǖ冗厡Φ冉牵.
、鄣妊切蔚、,相互重合.④等腰三角形是圖形,對稱軸是三線合一(1條).⑸等邊三角形的性質:
、俚冗吶切稳叾枷嗟.
②等邊三角形三個內角都相等,都等于度。③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).3.基本判定:
、诺妊切蔚呐卸ǎ
、傧嗟鹊娜切问堑妊切.
、谌绻粋三角形有兩個角相等,那么這兩個角所對的邊也(等角對等邊).
、频冗吶切蔚呐卸ǎ
①都相等的三角形是等邊三角形.②三個角都相等的三角形是三角形.
、塾幸粋角是度。的等腰三角形是等邊三角形.
4.基本方法:
、抛鲆阎本的垂線:
⑵做已知線段的垂直平分線:
、亲鲗ΨQ軸:連接兩個對應點,作所連線段的垂直平分線.
、茸饕阎獔D形關于某直線的對稱圖形:
、稍谥本上做一點,使它到該直線同側的兩個已知點的距離之和最短.
第十四章整式的乘除與分解因式
一、知識框架:
整式乘法乘法法則整式除法因式分解
二、知識概念:
基本運算:⑴同底數冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。
2.整式的乘法:⑴單項式單項式:系數,同字母,不同字母為積的因式.⑵單項式多項式:。⑶多項式多項式:.
3.計算公式:
、牌椒讲罟剑篴babab
222222⑵完全平方公式:aba2abb;aba2abb
224.整式的除法:
、磐讛祪绲某ǎ篴aamnmn
、茊雾検絾雾検剑合禂,同字母,不同字母作為商的因式.⑶多項式單項式:.⑷多項式多項式:用豎式.
5.因式分解:把一個多項式化成的積的形式,這種變形叫做把這個式子因式分解.
6.因式分解方法:
、盘峁蚴椒ǎ赫页鲎畲蠊蚴.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項法⑸添項法第十五章分式一、知識框架:
二、知識概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質:分式的分子和分母同時乘以(或除以)同一個不為的整式,分式的值不變.4.約分:把一個分式的分子和分母的(不為1的數)約去,這種變形稱為約分.5.通分:異分母的分式可以化成的分式,這一過程叫做通分.
6.最簡分式:一個分式的分子和分母沒有時,這個分式稱為最簡分式,約分時,一般將一個分式化為最簡分式.7.分式的四則運算:
⑴同分母分式加減法則:同分母的分式相加減,分母,把相加減.用字
母表示
為:。
、飘惙帜阜质郊訙p法則:異分母的分式相加減,先,化為同分母的分
式,然后再按同分母分式的加減法法則進行計算.用字母表示為:。
⑶分式的乘法法則:兩個分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。
⑷分式的除法法則:兩個分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數指數冪:⑴aaam⑵amnmn(m、n是正整數)namn(m、n是正整數)nn⑶abab(n是正整數)n⑷aaanmnmn(a0,m、n是正整數,mn)ana⑸n(n是正整數)bb⑹an1(a0,n是正整數)na9.分式方程的意義:分母中含有未知數的方程叫做分式方程.10.分式方程的解法:
、(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;
、(求出未知數的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根).
初中數學知識點總結6
關鍵詞:初一數學;基礎知識;教學策略
初中數學是一個整體,相對而言,初一數學知識點很多,注重基礎,初一數學是對學數學的適當深入,也為后續(xù)的學習打下良好的基礎。在初一數學的教學中,注重學生基礎知識的掌握是非常必要的。如今的現狀是,剛入初中的學生并沒有對打好數學基礎有足夠的重視。一些學生剛進入初中,在數學學習中感受不到壓力,沒有投入足夠的精力,因而漸漸地就積累了很多關于基礎知識的小問題,這些小問題在學生進入后續(xù)的學習中,慢慢就越來越多,形成大問題,大問題漸漸就會凸顯出來,學生漸漸就會感到力不從心。下面就針對初一學生學習中的問題,具體談談如何打好初一數學的基礎。
一、打好初一數學基礎的重要性
進入中學,學生的科目增加,內容拓展,知識深入,數學這門學科由具體到抽象,從文字發(fā)展成了符號,從靜態(tài)逐漸發(fā)展成了動態(tài)。初一數學學習是很重要的一年,能夠讓學生感受到初中數學與小學的不同,并能感受到數學學習帶來的快樂,然而,一些學生對數學產生厭惡情緒也大都是從初中開始的,由于基礎沒打好對數學產生厭惡是很多學生的通病。基礎知識是進行深入學習的根基,它為數學學習的深入做鋪墊,然而基礎知識卻并沒有得到初一學生應有的足夠重視。初中的數學知識相對小學來說,已有了很大的深入,如果初一的基礎知識沒有打好,學生會漸漸感到吃力,從而跟不上教學步伐,導致產生厭學情緒。不利于學生的發(fā)展。因此,教師在教學中必須注重初一學生基礎知識的培養(yǎng),并使學生認識到打好基礎知識的重要性。
二、初一數學學習中常出現的問題
1、知識點理解不透徹
初一學生剛入初中,依然保留著小學生的一些習慣,愛玩并且厭煩課本上的基礎知識點。對知識點的理解停留在一知半解的層次上。并且,學生并沒有對基礎知識有足夠的重視,沒有認識到基礎知識的重要性,從而導致基礎知識越來越差,產生對數學的厭煩,進入惡性循環(huán)。
2、解答題目小錯誤多,無法完整地解決問題
學生由于不重視基礎,導致一些題目無法完整地進行解決,無論簡單的題型還是難的題型,都是建立在基礎知識點上的。學生的問題是無法把握其中的基礎技巧,忽視基礎知識,始終不能完整地解決問題。
3、沒有養(yǎng)成歸納總結的好習慣
學生在平時的練習中會有許多解錯的題型和忽視了的知識點,然而大都都是錯了就錯了,并沒有進行歸納總結,導致對錯誤的題型沒有進行反思,從而一錯再錯。對一些基礎知識點,也沒有進行很好的歸納,腦海里沒有一個系統(tǒng)的基礎知識網。
三、打好學生數學基礎的策略
1、明確教學目標,突出重點
每一堂課的教學,都有它的重點內容,每一堂課,作為教師,首先都需要明確這堂課的教學目標,并要突出重點,讓學生對這堂課所學的知識點有一個清晰的.輪廓。教師可以在黑板的一角把重點內容簡短地寫出來,并保持一節(jié)課,引起學生的關注和重視。教師要通過不斷強調和引用,使學生對重點知識點留下深刻的印象,并可以出一個引用了重點知識的題目讓學生解答。例如,學習《數軸》這一節(jié)時,教師可先對重點基礎知識點進行講解,讓學生了解數軸的基本定義,在腦海里留下一個概念,再讓學生上講臺到黑板上按要求畫下來。畫完后,讓學生自己做必要的講解,比如畫數軸的三要素原點、正方向、單位長度。這樣,學生對數軸的基礎知識點就會有一個深刻的印象。
2、精講例題,多做課堂練習
針對基礎知識,教師可在課堂上多設置一些例題,使學生能夠把基礎知識應用到題目中去解答,從而認識到基礎知識的重要性。教師要精選例題,按照這節(jié)課的重點基礎內容進行選題,從結構特征、思維方式等各個方面進行對題型的剖析,從而讓學生在解題的基礎之上掌握基礎知識的關鍵。知識點講得再多也是抽象空洞的,只有與題目進行結合,讓學生靈活運用,才能夠使學生對知識點有一個深刻的理解。課堂上需根據實際情況布置課堂練習,練習量針對知識點的難易程度可多可少,重要的是要讓學生有一個思考解答的過程。教師可讓學生自主進行解答,若解答不出教師則做必要的指點進行幫助,并且要鼓勵學生不懂就要問。還可以讓學生共同討論一些難點問題,促進學生勤學好問的習慣培養(yǎng)。
3、形象教學,變抽象為具體
教師在實際課堂教學中,可以運用很多種教學方式,每一堂課都有其教學目標,教學需根據教學內容的變化選擇適當的教學方式,形象教學是很重要并且很有效的教學方式。例如,進行幾何的教學,教師可以進行具體演示,向學生展示幾何模型,運用幾何模型來驗證幾何結論。
4、讓學生收集題目,制作錯題集
基礎是在無數次練習的基礎之上總結出來的,做題如同挖金礦,對待錯題就如同對待發(fā)掘冶煉金礦一樣。學生在做題時,會遇到很多難題和易錯題,對于做錯了的題目,學生看看就丟到一邊,是沒有起到練習應有的效果的。教師要促使學生制作一個錯題集,專門收集自己做錯或者不會做的題目,讓學生自己分析做錯的原因,為什么會做錯,下次如何避免,學生在總結反思的過程中,自然而然就對知識進行了一次梳理。例如,用科學計數法計數是學生經常容易犯錯的知識點,學生的粗心導致很簡單的問題經常犯錯,通過錯題集,學生收集表示錯的科學計數法,不斷總結、強化,從而做到更細心。
初一數學學習對剛進入初中的學生來說是非常重要的,其既是對小學數學知識的必要深入,也為后續(xù)更深層次的學習打下關鍵的基礎。然而,初一學生往往并沒有認識到進入初中打好數學基礎的重要性。本文針對學好初一數學的重要性和初一數學學習面臨的一些問題進行了具體討論,最后總結出提高學生數學基礎知識的幾條教學策略,給以后的數學教學提供參考。
參考文獻:
[1]吳遠,學生數學自主能力的培養(yǎng)[J]。巨人教學資源,20xx。
初中數學知識點總結7
關于初中數學幾何知識點總結
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。
9、三角形內角和定理:三角形三個內角的和等于180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等于和它不相鄰的兩個內角和
推論3三角形的一個外角大于任何一個和它不相鄰的內角;三角形的內角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內角和;
(3)三角形的一個外角大于與它不相鄰的任一內角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點、概念總結
一、平行四邊形的定義、性質及判定
1、兩組對邊平行的.四邊形是平行四邊形。
2、性質:
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質:矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線互相垂直,并且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等于兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質及判定
1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形
2、性質:
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
九、多邊形
為什么要學習數學
作為一門普及度極廣的學科,數學在人類文明的發(fā)展史上一直占據著重要的地位。雖然很多人可能會對數學產生排斥,認為它枯燥無味,但事實上,數學是所有學科的基石之一,對我們日常生活以及未來的職業(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數學的重要性。
首先,數學可以幫助我們提高邏輯思維能力。數學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。
其次,數學在現代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數學可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實際應用中優(yōu)化和改進。例如,在人工智能領域,深度學習技術所涉及的數學概念包括線性代數、微積分和概率論等,如果沒有深厚的數學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數學知識,因此學習數學可以使我們更好地參與到現代科技的發(fā)展中。
除此之外,數學也是一種普遍使用的語言,許多學科和領域都使用數學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數學語言來描述自然世界的規(guī)律和現象。在社會科學和商科領域,經濟學和金融學運用的數學概念,如微積分、線性代數和統(tǒng)計學等,使得我們能夠更好地理解經濟和財務數據,并進行決策。因此,學習數學可以讓我們更好地理解、溝通和交流各個領域的知識。
最后,學習數學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領域,數學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數據科學、研究機構、教育等。數學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現實中具體的問題,使其在各自領域脫穎而出。
怎樣快速提高數學成績?
一、查缺補漏,主攻薄弱
請制作“失分分析表”,包括“不會做的”和“不該丟分的”兩部分,分析模擬考試等試卷失分情況,在緊跟老師復習的基礎上,針對自己的薄弱環(huán)節(jié)重點彌補、改進。
別一味沖刺難題。做題是對理論知識的進一步鞏固與實檢,我們要在理解的基礎上加強練習,以達到鞏固的目的,但不能一味追求難題偏題。
因為中考試卷中有30%是比較靈活的題型,只有10%是真正的難題。30%那部分題目是我們能拿但容易失分的題目,我們要做到盡量多拿分,但如果我們一味求難求險,就會因為忽視基礎題型的夯實和鞏固而失掉這部分該得的分。在基礎掌握后,有條件的同學可再進行一些難題怪題的攻關,這樣的策略才更能保證效率。
二、反思錯題
不要盲目找題做,陷入題海中,不要“就題論題”停留在“這題我會了”的低水平上。解題能力是在反思中提升的。懂、會、悟是數學水平的三個層次。簡單說,聽懂了,但不一定會,更不意味著真正領悟了。
三、克服無謂失分
如何避免審題出錯?
原因:看太快。
應對策略:
1.默讀法;2.重點字詞圈點勾畫法;3.審圖法。
如何降低計算失誤?
表面原因是粗心,其實是計算能力不足。平時對計算不以為然,認為“沒有技術含量”。事實上計算也有很多“聰明算法”,如:邊化簡邊計算、寧加勿減、寧乘勿除、小數化分數、找最小最短的設元、放縮法、湊整法、圖象法等等計算技巧。
應對策略:
1.不要為了趕時間而跳步計算;
2.寧可筆算,少用口算,更不要再抱著計算器;
3.對平時易算錯的題型,可以驗算一遍。
四、關注幾個重點問題
1.新定義題型、非常規(guī)題型、存在性問題。
2.分析法—執(zhí)果索因,逆向思維,倒過來想,假設存在;不完全歸納法—根據例子,大膽猜想、努力驗證。反例排除法、特殊圖形(特殊位置、極端值)探究法等。
提高數學成績常用方法有哪些
1、預習
預期常常由于“沒時間,看不懂,不必要”等等原因被忽略。實際上預習是學習的必要過程,更是提高自學能力的好方法。
2、學會聽課
聽分析、聽思路、聽應用,關鍵內容一字不漏,注意記錄。
3、做好錯題本
每個會學習的學生都會有錯題本。調查發(fā)現那些沒有錯題本,或者是只做不用的同學,學習效果都不好。
4、用好課外書
正確認識網絡課程和課外書籍,是副食,是幫助吸收的良藥。
5、注重數學思維方法的培養(yǎng)
要注意數學思想和方法的指導,站得高,才能看得遠。
初中數學知識點總結8
1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。
2.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
4.圓是定點的距離等于定長的點的集合。
5.圓的內部可以看作是圓心的距離小于半徑的點的集合;圓的外部可以看作是圓心的距離大于半徑的點的集合。
6.不在同一直線上的三點確定一個圓。
7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
推論1:
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;
、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧;
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
8.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
9.定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角。
10.經過切點且垂直于切線的直線必經過圓心。
11.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線。
12.切線的性質定理圓的切線垂直于經過切點的半徑。
13.經過圓心且垂直于切線的直線必經過切點
14.切線長定理從圓外一點引圓的.兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
15.圓的外切四邊形的兩組對邊的和相等外角等于內對角。
16.如果兩個圓相切,那么切點一定在連心線上。
17.
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交d>R-r)
、軆蓤A內切d=R-r(R>r)
、輧蓤A內含d=r)
18.定理把圓分成n(n≥3):
、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形
、平涍^各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。
19.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓。
20.弧長計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。
21.內公切線長= d-(R-r)外公切線長= d-(R+r)。
22.定理一條弧所對的圓周角等于它所對的圓心角的一半。
23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
初中數學知識點總結9
一、基本知識
一、數與代數
A、數與式:
1、有理數:
、僬麛怠麛担0,負整數;
②分數→正分數,負分數
數軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸。
、谌魏我粋有理數都可以用數軸上的一個點來表示。
、廴绻麅蓚數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0、兩個負數比較大小,絕對值大的反而小。
有理數的運算:帶上符號進行正常運算。
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉樱^對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋數與0相加不變。
減法:減去一個數,等于加上這個數的相反數。
乘法:
、賰蓴迪喑耍柕谜,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0、
、鄢朔e為1的兩個有理數互為倒數。
除法:
、俪砸粋數等于乘以一個數的倒數。
、0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數
無理數
無理數:無限不循環(huán)小數叫無理數,例如:π=…
平方根:
①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。
、谌绻粋數X的平方等于A,那么這個數X就叫做A的平方根。
、垡粋正數有2個平方根;0的平方根為0;負數沒有平方根。
、芮笠粋數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:
、偃绻粋數X的立方等于A,那么這個數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。
、矍笠粋數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:
、賹崝捣钟欣頂岛蜔o理數。
、谠趯崝捣秶鷥龋喾磾,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;
③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:
、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
、贁蹬c字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
②一個單項式中,所有字母的指數和叫做這個單項式的次數。
、垡粋多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
。ˋ/B)^N=A^N/B^N
除法一樣。
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、
整式的除法:
①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、
、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢档姆匠探蟹质椒匠。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1、
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的.方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y=0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖像與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
。1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解
。2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
。3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式
。2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
。3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a
也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△B,則A+C>B+C;
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;
例如:如果A>B,則A—C>B—C;
在不等式中,如果乘以同一個正數,不等式符號不改向;
例如:如果A>B,則A*C>B*C(C>0);
在不等式中,如果乘以同一個負數,不等號改向;
例如:如果A>B,則A*C
如果不等式乘以0,那么不等號改為等號;
所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;
3、函數
變量:因變量Y,自變量X。
在用圖像表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
一次函數:
、偃魞蓚變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。
②當B=0時,稱Y是X的正比例函數。
一次函數的圖像:
①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖像。
、谡壤瘮礩=KX的圖像是經過原點的一條直線。
③在一次函數中,當K〈0,B〈O時,則經234象限;
當K〈0,B〉0時,則經124象限;
當K〉0,B〈0時,則經134象限;
當K〉0,B〉0時,則經123象限。
、墚擪〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:
、賵D形是由點,線,面構成的。
、诿媾c面相交得線,線與線相交得點。
、埸c動成線,線動成面,面動成體。
展開與折疊:
、僭诶庵,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
2、角
線:
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
、芙涍^兩點有且只有一條直線。
比較長短:
、賰牲c之間的所有連線中,線段最短。兩點之間直線最短。
、趦牲c之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線繞著他的端點旋轉而成的。
、谝粭l射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角,180、始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角,360、
、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
、偻黄矫鎯,不相交的兩條直線叫做平行線。
、诮涍^直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。
、燮矫鎯,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。
性質定理:角平分線上的點到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:
1、對角線相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等——補角=180—角度。
4、同角或等角的余角相等——余角=90—角度。
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理:三角形兩邊的和大于第三邊
16、推論:三角形兩邊的差小于第三邊
17、三角形內角和定理:三角形三個內角的和等于180°
18、推論1:直角三角形的兩個銳角互余
19、推論2:三角形的一個外角等于和它不相鄰的兩個內角的和
20、推論3:三角形的一個外角大于任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1:在角的平分線上的點到這個角的兩邊的距離相等
28、定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3:等邊三角形的各角都相等,并且每一個角都等于60°
33、等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
34、等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)
35、推論1:三個角都相等的三角形是等邊三角形
36、推論:有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1:關于某條直線對稱的兩個圖形是全等形
43、定理:如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3:兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48、定理:四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理:n邊形的內角的和等于(n—2)×180°
51、推論:任意多邊的外角和等于360°
52、平行四邊形性質定理1:平行四邊形的對角相等
53、平行四邊形性質定理2:行四邊形的對邊相等
54、推論:夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3:平行四邊形的對角線互相平分
56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1:矩形的四個角都是直角
61、矩形性質定理2:矩形的對角線相等
62、矩形判定定理1:有三個角是直角的四邊形是矩形
63、矩形判定定理2:對角線相等的平行四邊形是矩形
64、菱形性質定理1:菱形的四條邊都相等
65、菱形性質定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1:四邊都相等的四邊形是菱形
68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1:正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1:關于中心對稱的兩個圖形是全等的
72、定理2:關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73、逆定理:如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質定理:等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d
84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例
87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3:三邊對應成比例,兩三角形相似(SSS)
95、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)
96、性質定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質定理2:相似三角形周長的比等于相似比
98、性質定理3:相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)
101、圓是定點的距離等于定長的點的集合
102、圓的內部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理:不在同一直線上的三點確定一個圓。
110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條。ㄖ睆剑
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120、定理
圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
121、①直線L和⊙O相交0<=d<r
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
122、切線的判定定理
經過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質定理
圓的切線垂直于經過切點的半徑
124、推論1
經過圓心且垂直于切線的直線必經過切點
125、推論2
經過切點且垂直于切線的直線必經過圓心
126、切線長定理
從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理
從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?
133、推論
從圓外一點引圓的兩條割線,這一點到每條
割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離d>R+r
②兩圓外切d=R+r
、蹆蓤A相交R—r<d<R+r(R>r)
、軆蓤A內切d=R—r(R>r)
、輧蓤A內含d<R—r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理
任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等于(n—2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長
142、正三角形面積√3a^2/4,a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長=d—(R—r),外公切線長=d—(R+r)
初中數學知識點總結10
一、可能性:
1. 必然事件:有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;
2.不可能事件:有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;
3.確定事件:必然事件和不可能事件都是確定的;
4.不確定事件:有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。
5.一般來說,不確定事件發(fā)生的可能性是有大小的。.
二、概率:
1.概率的意義:表示一個事件發(fā)生的可能性大小的這個數叫做該事件的概率。
2.必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0
3.一步試驗事件發(fā)生的概率的計算公式是P=k/n,n為該事件所有等可能出現的結果數,k為事件包含的結果數。兩步試驗事件發(fā)生的概率的發(fā)生的概率的計算方法有兩種,一種是列表法,另一種是畫樹狀圖,利用這兩種方法計算兩步實驗時,應用樹狀圖或列表將簡單的兩步試驗所有可能的情況表示出來,從而計算隨機事件的概率。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的。數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的'方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點總結11
基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理xxx兩邊的和大于第三邊
16、推論xxx兩邊的差小于第三邊
17、xxx內角和定理xxx三個內角的和等于180°
18、推論1直角xxx的兩個銳角互余
19、推論2 xxx的一個外角等于和它不相鄰的兩個內角的和
20、推論3 xxx的一個外角大于任何一個和它不相鄰的內角
21、全等xxx的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個xxx全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個xxx全等
24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個xxx全等
25、邊邊邊公理(SSS)有三邊對應相等的兩個xxx全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角xxx全等
27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰xxx的性質定理等腰xxx的兩個底角相等(即等邊對等角)
31、推論1等腰xxx頂角的平分線平分底邊并且垂直于底邊
32、等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊xxx的.各角都相等,并且每一個角都等于60°
34、等腰xxx的判定定理如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1三個角都相等的xxx是等邊xxx
36、推論2有一個角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1關于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果xxx的三邊長a、b、c有關系a2+b2=c2,那么這個xxx是直角xxx
48、定理四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°
初中數學知識點總結12
三角形兩邊:
定理三角形兩邊的和大于第三邊。
推論三角形兩邊的差小于第三邊。
三角形中位線定理:
三角形的中位線平行于第三邊,并且等于它的一半。
三角形的重心:
三角形的重心到頂點的距離是它到對邊中點距離的2倍。
在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線,三角形的三條中線交于一點,這一點叫做“三角形的重心”。
與三角形有關的角:
1、三角形的內角和定理:三角形的內角和為180°,與三角形的形狀無關。
2、直角三角形兩個銳角的關系:直角三角形的兩個銳角互余(相加為90°)。有兩個角互余的三角形是直角三角形。
3、三角形外角的性質:三角形的一個外角等于與它不相鄰的兩個內角之和;三角形的一個外角大于與它不相鄰的任何一個內角;三角形三個外角和為360°。
全等三角形的性質和判定:
全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉、對折也會構成全等三角形。
。ㄟ呥呥叄,即三邊對應相等的兩個三角形全等。
。ㄟ吔沁叄,即三角形的其中兩條邊對應相等,且兩條邊的夾角也對應相等的兩個三角形全等。
(角邊角),即三角形的其中兩個角對應相等,且兩個角夾的的邊也對應相等的'兩個三角形全等。
。ń墙沁叄,即三角形的其中兩個角對應相等,且對應相等的角所對應的邊也對應相等的兩個三角形全等。
(斜邊、直角邊),即在直角三角形中一條斜邊和一條直角邊對應相等的兩個直角三角形全等。
等邊三角形的判定:
1、三邊相等的三角形是等邊三角形(定義)。
2、三個內角都相等的三角形是等邊三角形。
3、有一個角是60度的等腰三角形是等邊三角形。
4、有兩個角等于60度的三角形是等邊三角形。
初中數學知識點總結13
初中生經過中考的奮力拼搏,剛跨入高中,都有十足的信心,旺盛的求知欲,都有把高中課程學好的愿望。但經過一段時間,他們普遍感覺高中數學并非想象中那么簡單易學,而是太枯燥,泛味,抽象,晦澀,有些章節(jié)如聽天書。在做習題,課外練習時,又是磕磕碰碰,跌跌撞撞,常常感到茫然一片,不知從何下手。造成這種現象的原因是多方面的,但最主要的根源還在于初,高中數學教學上的銜接問題。下面就這個問題進行分析,探討其原因,尋找解決對策。
一、高一學生學習數學產生困難是造成數學成績下降的主要原因
。ㄒ唬┙滩牡脑颉
由于實行九年制義務教育和倡導全面提高學生素質,現行初中數學教材在內容上進行了較大幅度的調整,難度,深度和廣度大大降低了,那些在高中學習中經常應用到的知識,如:對數,二次不等式,解斜三角形,分數指數冪等內容,都轉移到高一階段補充學習。這樣初中教材就體現了"淺,少,易"的特點,但卻加重了高一數學的份量。另外,初中數學教材中每一新知識的引入往往與學生日常生活實際很貼近,比較形象,并遵循從感性認識上升到理性認識的規(guī)律,學生一般都容易理解,接受和掌握。且目前初中教材敘述方法比較簡單,語言通俗易懂,直觀性,趣味性強,結論容易記憶,應試效果也比較理想。
相對而言,高中數學一開始,概念抽象,定理嚴謹,邏輯性強,教材敘述比較嚴謹,規(guī)范,抽象思維和空間想象明顯提高,知識難度加大,且習題類型多,解題技巧靈活多變,計算繁冗復雜,體現了"起點高,難度大,容量多"的特點。
。ǘ┙谭ǖ脑颉
初中數學教學內容少,知識難度不大,教學要求較低,因而教學進度較慢,對于某些重點,難點,教師可以有充裕的時間反復講解,多次演練,從而各個擊破、另外,為了應付中考,初中教師大多數采用"滿堂灌"填鴨式的教學模式,單純地向學生傳授知識,并讓學生通過機械模仿式的重復練習以達到熟能生巧的程度,結果造成"重知識,輕能力","重局部,輕整體","重試卷(復習資料),輕書本"的不良傾向。這種封閉被動的傳統(tǒng)教學方式嚴重束縛了學生思維的發(fā)展,影響了學生發(fā)現意識的形成,創(chuàng)新思維受到了扼制。但是進入高中以后,教材內涵豐富,教學要求高,進度快,知識信息廣泛,題目難度加深,知識的重點和難點也不可能象初中那樣通過反復強調來排難釋疑。而且高中教學往往通過設導,設問,設陷,設變,啟發(fā)引導,開拓思路,然后由學生自己去思考,去解答,比較注意知識的發(fā)生過程,傾重對學生思想方法的滲透和思維品質的培養(yǎng)。這使得剛進入高中的學生不容易適應這種教學方法。聽課時就存在思維障礙,不容易跟上教師的思維,從而產生學習障礙,影響數學的學習。
。ㄈ⿲W生自身的原因。
、俦粍訉W習
在初中,教師講得細,類型歸納得全,反復練習。考試時,學生只要記憶概念,公式,及例題類型,一般都可以對號入座取得好成績。因此,學生習慣于圍著教師轉,不需要獨立思考和對規(guī)律進行歸納總結。學生滿足于你講我聽,你放我錄,缺乏學習主動性。表現在不定計劃,坐等上課,課前沒有預習,對老師上課的內容不了解,上課忙于記筆記,沒聽到"門道",沒有真正理解所學內容。而到了高中,數學學習要求學生勤于思考,善于歸納總結規(guī)律,掌握數學思想方法,做到舉一反三,觸類旁通。所以,剛入學的高一新生,往往沿用初中學法,致使學習出現困難,完成當天作業(yè)都很困難,更沒有預習,復習,總結等自我消化,自我調整的時間。這顯然不利于良好學法的形成和學習質量的提高。造成高一學生數學學習的困難。
、趯W不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固,總結,尋找知識間的聯系,只是趕做作業(yè),亂套題型,對概念,法則,公式,定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
二、搞好初高中數學教學銜接,幫助學生渡過學習數學"困難期"的對策
(一)做好準備工作,為搞好銜接打好基礎。
1、搞好入學教育。這是搞好銜接的基礎工作,也是首要工作。
通過入學教育提高學生對初高中銜接重要性的認識,增強緊迫感,消除松懈情緒,初步了解高中數學學習的特點,為其它措施的落實奠定基礎。這里主要做好四項工作:一是給學生講清高一數學在整個中學數學中所占的位置和作用;二是結合實例,采取與初中對比的方法,給學生講清高中數學內容體系特點和課堂教學特點;三是結合實例給學生講明初高中數學在學法上存在的本質區(qū)別,并向學生介紹一些優(yōu)秀學法,指出注意事項;四是請高年級學生談體會講感受,引導學生少走彎路,盡快適應高中學習。
2、摸清底數,規(guī)劃教學。為了搞好初高中銜接,教師首先要摸清學生的'學習基礎,然后以此來規(guī)劃自己的教學和落實教學要求,以提高教學的針對性。在教學實際中,一方面通過進行摸底測試和對入學成績的分析,了解學生的基礎;另一方面,認真學習和比較初高中教學大綱和教材,以全面了解初高中數學知識體系,找出初高中知識的銜接點,區(qū)別點和需要鋪路搭橋的知識點,以使備課和講課更符合學生實際,更具有針對性。
(二)優(yōu)化課堂教學環(huán)節(jié),搞好初高中數學知識銜接教學。
1、立足于大綱和教材,尊重學生實際,實行層次教學。
高一數學中有許多難理解和掌握的知識點,如集合,映射等,對高一新生來講確實困難較大。因此,在教學中,應從高一學生實際出發(fā),采用低起點,小梯度,多訓練,分層次"的方法,將教學目標分解成若干遞進層次逐層落實。在速度上,放慢起始進度,逐步加快教學節(jié)奏。在知識導入上,多由實例和已知引入。在知識落實上,先落實"死"課本,后變通延伸用活課本。在難點知識講解上,從學生理解和掌握的實際出發(fā),對教材作必要層次處理和知識鋪墊,并對知識的理解要點和應用注意點作必要總結及舉例說明。
2、重視新舊知識的聯系與區(qū)別,建立知識網絡。
初高中數學有很多銜接知識點,如函數概念,平面幾何與立體幾何相關知識等,到高中,它們有的加深了,有的研究范圍擴大了,有些在初中成立的結論到高中可能不成立。因此,在講授新知識時,應當有意引導學生聯系舊知識,復習和區(qū)別舊知識,特別注重對那些易錯易混的知識加以分析,比較和區(qū)別。這樣可達到溫故知新,溫故而探新的效果。
3、重視展示知識的形成過程和方法探索過程,培養(yǎng)學生創(chuàng)造能力。
高中數學比初中數學抽象性強,應用靈活,這就要求學生對知識理解要透,應用要活,不能只停留在對知識結論的死記硬套上,這就要求教師應向學生展示新知識和新解法的產生背景,形成和探索過程,不僅使學生掌握知識和方法的本質,提高應用的靈活性,而且還使學生學會如何質疑和釋疑的思想方法,促進創(chuàng)造性思維能力的提高。
4、重視培養(yǎng)學生自我反思自我總結的良好習慣,提高學習的自覺性。
高中數學概括性強,題目靈活多變,課上聽懂是不夠的,需要課后進行認真消化,認真總結歸納。這就要求學生應具備善于自我反思和自我總結的能力。因此,在教學中,應當抓住時機積極培養(yǎng)。在單元結束時,幫助學生進行自我章節(jié)小結,在解題后,積極引導學生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規(guī)律的總結。由此培養(yǎng)學生善于進行自我反思的習慣,擴大知識和方法的應用范圍,提高學習效率。
。ㄈ┘訌妼W法指導,培養(yǎng)良好學習習慣
初中數學知識點總結14
誘導公式的本質
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的'三角函數值之間的關系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數學知識點總結15
一.算法,概率和統(tǒng)計
1.算法初步(約12課時)
。1)算法的含義、程序框圖
①通過對解決具體問題過程與步驟的分析(如,二元一次方程組求解等問題),體會算法的思想,了解算法的含義。
②通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如,三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環(huán)。
(2)基本算法語句
經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句--輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。
。3)通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發(fā)展的貢獻。
3.概率(約8課時)
。1)在具體情境中,了解隨機事件發(fā)生的不確定性和頻率的穩(wěn)定性,進一步了解概率的意義以及頻率與概率的區(qū)別。
。2)通過實例,了解兩個互斥事件的概率加法公式。
。3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發(fā)生的概率。
。4)了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。
(5)通過閱讀材料,了解人類認識隨機現象的過程。
2.統(tǒng)計(約16課時)
。1)隨機抽樣
、倌軓默F實生活或其他學科中提出具有一定價值的統(tǒng)計問題。
、诮Y合具體的實際問題情境,理解隨機抽樣的必要性和重要性。
、墼趨⑴c解決統(tǒng)計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統(tǒng)抽樣方法。
、苣芡ㄟ^試驗、查閱資料、設計調查問卷等方法收集數據。
。2)用樣本估計總體
、偻ㄟ^實例體會分布的意義和作用,在表示樣本數據的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會他們各自的特點。
、谕ㄟ^實例理解樣本數據標準差的意義和作用,學會計算數據標準差。
③能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特征(如平均數、標準差),并作出合理的解釋。
、茉诮鉀Q統(tǒng)計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數字特征估計總體的基本數字特征;初步體會樣本頻率分布和數字特征的隨機性。
、輹秒S機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數據的分析為合理的決策提供一些依據,認識統(tǒng)計的作用,體會統(tǒng)計思維與確定性思維的差異。
、扌纬蓪祿幚磉^程進行初步評價的意識。
。3)變量的相關性
①通過收集現實問題中兩個有關聯變量的數據作出散點圖,并利用散點圖直觀認識變量間的相關關系。
、诮洑v用不同估算方法描述兩個變量線性相關的.過程。知道最小二乘法的思想,能根據給出的線性回歸方程系數公式建立線性回歸方程。
二.常用邏輯用語
1。命題及其關系
、倭私饷}的逆命題、否命題與逆否命題。
、诶斫獗匾獥l件、充分條件與充要條件的意義,會分析四種命題的相互關系。
。2)簡單的邏輯聯結詞
通過數學實例,了解“或”、“且”、“非”的含義。
。3)全稱量詞與存在量詞
①通過生活和數學中的豐富實例,理解全稱量詞與存在量詞的意義。
、谀苷_地對含有一個量詞的命題進行否定。
3.導數及其應用(約16課時)
。1)導數概念及其幾何意義
①通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵(參見例2、例3)。
、谕ㄟ^函數圖像直觀地理解導數的幾何意義。
(2)導數的運算
、倌芨鶕䦟刀x,求函數y=c,y=x,y=x2,y=1/x的導數。
、谀芾媒o出的基本初等函數的導數公式和導數的四則運算法則求簡單函數的導數。
、蹠褂脤倒奖。
(3)導數在研究函數中的應用
①結合實例,借助幾何直觀探索并了解函數的單調性與導數的關系(參見例4);能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區(qū)間。
、诮Y合函數的圖像,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及在給定區(qū)間上不超過三次的多項式函數的最大值、最小值。2.圓錐曲線與方程(約12課時)
(1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。
。2)經歷從具體情境中抽象出橢圓模型的過程(參見例1),掌握橢圓的定義、標準方程及簡單幾何性質。
。3)了解拋物線、雙曲線的定義、幾何圖形和標準方程,知道它們的簡單幾何性質。
(4)通過圓錐曲線與方程的學習,進一步體會數形結合的思想。
。5)了解圓錐曲線的簡單應用。
三.統(tǒng)計案例(約14課時)
通過典型案例,學習下列一些常見的統(tǒng)計方法,并能初步應用這些方法解決一些實際問題。
①通過對典型案例(如“肺癌與吸煙有關嗎”等)的探究,了解獨立性檢驗(只要求2×2列聯表)的基本思想、方法及初步應用。
、谕ㄟ^對典型案例(如“質量控制”、“新藥是否有效”等)的探究,了解實際推斷原理和假設檢驗的基本思想、方法及初步應用(參見例1)。
、弁ㄟ^對典型案例(如“昆蟲分類”等)的探究,了解聚類分析的基本思想、方法及初步應用。
④通過對典型案例(如“人的體重與身高的關系”等)的探究,進一步了解回歸的基本思想、方法及初步應用。
2.推理與證明(約10課時)
(1)合情推理與演繹推理
、俳Y合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的。推理,體會并認識合情推理在數學發(fā)現中的作用(參見例2、例3)。
、诮Y合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本方法,并能運用它們進行一些簡單推理。
、弁ㄟ^具體實例,了解合情推理和演繹推理之間的聯系和差異。
。2)直接證明與間接證明
①結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
②結合已經學過的數學實例,了解間接證明的一種基本方法--反證法;了解反證法的思考過程、特點。
數學概率知識點匯總
第一部分:隨機事件和概率
(1)樣本空間與隨機事件
(2)概率的定義與性質(含古典概型、幾何概型、加法公式)
(3)條件概率與概率的乘法公式
(4)事件之間的關系與運算(含事件的獨立性)
(5)全概公式與貝葉斯公式
(6)伯努利概型
其中:條件概率和獨立為本章的重點,這也是后續(xù)章節(jié)的難點之一,大家一定要引起重視
第二部分:隨機變量及其概率分布
(1)隨機變量的概念及分類
(2)離散型隨機變量概率分布及其性質
(3)連續(xù)型隨機變量概率密度及其性質
(4)隨機變量分布函數及其性質
(5)常見分布
(6)隨機變量函數的分布
其中:要理解分布函數的定義,還有就是常見分布的分布律抑或密度函數必須記好且熟練。
第三部分:二維隨機變量及其概率分布
(1)多維隨機變量的概念及分類
(2)二維離散型隨機變量聯合概率分布及其性質
(3)二維連續(xù)型隨機變量聯合概率密度及其性質
(4)二維隨機變量聯合分布函數及其性質
(5)二維隨機變量的邊緣分布和條件分布
(6)隨機變量的獨立性
(7)兩個隨機變量的簡單函數的分布
其中:本章是概率的重中之重,每年的解答題定會有一道與此知識點有關,每個知識點都是重點,一定要重視!
第四部分:隨機變量的數字特征
(1)隨機變量的數字期望的概念與性質
(2)隨機變量的方差的概念與性質
(3)常見分布的數字期望與方差
(4)隨機變量矩、協方差和相關系數
其中:本章只要清楚概念和運算性質,其實就會顯得很簡單,關鍵在于計算
第五部分:大數定律和中心極限定理
(1)切比雪夫不等式
(2)大數定律
(3)中心極限定理
其中:其實本章考試的可能性不大,最多以選擇填空的形式,但那也是十年前的事情了。
第六部分:數理統(tǒng)計的基本概念
(1)總體與樣本
(2)樣本函數與統(tǒng)計量
(3)樣本分布函數和樣本矩
其中:本章還是以概念為主,清楚概念后靈活運用解決此類問題不在話下
第七部分:參數估計
(1)點估計
(2)估計量的優(yōu)良性
(3)區(qū)間估計
【初中數學知識點總結】相關文章:
初中數學總結知識點08-26
初中數學幾何知識點總結11-05
初中數學函數知識點總結11-24
初中數學圓的知識點總結12-05
初中數學函數知識點總結06-14
數學初中知識點總結06-10
【經典】數學初中知識點總結07-16
初中數學知識點總結07-15
初中數學知識點總結(精選)06-16
初中數學知識點總結07-22