高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)是在某一特定時(shí)間段對(duì)學(xué)習(xí)和工作生活或其完成情況,包括取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析的書(shū)面材料,它是增長(zhǎng)才干的一種好辦法,讓我們一起來(lái)學(xué)習(xí)寫(xiě)總結(jié)吧。那么你真的懂得怎么寫(xiě)總結(jié)嗎?以下是小編精心整理的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家分享。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
一、高中數(shù)列基本公式:
1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=
2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。
3、等差數(shù)列的前n項(xiàng)和公式:Sn=
Sn=
Sn=
當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。
4、等比數(shù)列的通項(xiàng)公式: an= a1qn-1an= akqn-k
(其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)
5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);
當(dāng)q≠1時(shí),Sn=
Sn=
二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論
1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。
2、等差數(shù)列{an}中,若m+n=p+q,則
3、等比數(shù)列{an}中,若m+n=p+q,則
4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的'和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。
5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。
6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。
7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。
8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。
9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d
10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;
四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
考點(diǎn)一:集合與簡(jiǎn)易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的'形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。
考點(diǎn)三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問(wèn)題是“新熱點(diǎn)”題型.
考點(diǎn)四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問(wèn)題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目.
考點(diǎn)五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。
考點(diǎn)六:解析幾何
一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。
考點(diǎn)七:算法復(fù)數(shù)推理與證明
高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語(yǔ)言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問(wèn).
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫(xiě)出點(diǎn)M的集合;
、沉谐龇匠=0;
、椿(jiǎn)方程為最簡(jiǎn)形式;
、禉z驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
、捕x法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的'方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
-直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
、哿惺健谐鰟(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。
第二、平面向量和三角函數(shù)。
重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。
第三、數(shù)列。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
第四、空間向量和立體幾何,在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
第五、概率和統(tǒng)計(jì)。
這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。
第六、解析幾何。
這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類常考的題型,包括:
第一類所講的直線和曲線的位置關(guān)系,這是考試最多的.內(nèi)容?忌鷳(yīng)該掌握它的通法;
第二類我們所講的動(dòng)點(diǎn)問(wèn)題;
第三類是弦長(zhǎng)問(wèn)題;
第四類是對(duì)稱問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn);
第五類重點(diǎn)問(wèn)題,這類題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,
當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。
第七、押軸題。
考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
1.定義法:
判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫(huà)出箭頭示意圖,再利用定義判斷即可.
2.轉(zhuǎn)換法:
當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷.
3.集合法
在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的.集合分別為A、B,則:
若A∩B,則p是q的充分條件.
若A∪B,則p是q的必要條件.
若A=B,則p是q的充要條件.
若A∈B,且B∈A,則p是q的既不充分也不必要條件.
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
。1)不等關(guān)系
感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的`實(shí)際背景。
。2)一元二次不等式
①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。
②通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
、蹠(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。
(3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題
、?gòu)膶?shí)際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見(jiàn)例2)。
、蹚膶(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決(參見(jiàn)例3)。
。4)基本不等式
①探索并了解基本不等式的證明過(guò)程。
、跁(huì)用基本不等式解決簡(jiǎn)單的(。┲祮(wèn)題。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。
兩異面直線所成的.角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
2、若從有無(wú)公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;
(2)沒(méi)有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
、僦本在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)
②直線和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
一、直線與方程高考考試內(nèi)容及考試要求:
考試內(nèi)容:
1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;
2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;
考試要求:
1.理解直線的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程;
2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;
二、直線與方程
課標(biāo)要求:
1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;
2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫(huà)直線斜率的過(guò)程,掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式;
3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì)斜截式與一次函數(shù)的關(guān)系;
4.會(huì)用代數(shù)的方法解決直線的有關(guān)問(wèn)題,包括求兩直線的交點(diǎn),判斷兩條直線的.位置關(guān)系,求兩點(diǎn)間的距離、點(diǎn)到直線的距離以及兩條平行線之間的距離等。
要點(diǎn)精講:
1.直線的傾斜角:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α= 0°.
傾斜角α的取值范圍:0°≤α<180°. 當(dāng)直線l與x軸垂直時(shí), α= 90°.
2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫(xiě)字母k表示,也就是k = tanα
。1)當(dāng)直線l與x軸平行或重合時(shí),α=0°,k = tan0°=0;
(2)當(dāng)直線l與x軸垂直時(shí),α= 90°,k 不存在。
由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。
3.過(guò)兩點(diǎn)p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:
(若x1=x2,則直線p1p2的斜率不存在,此時(shí)直線的傾斜角為90°)。
4.兩條直線的平行與垂直的判定
。1)若l1,l2均存在斜率且不重合:
①;②
注: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立。
(2)
若A1、A2、B1、B2都不為零。
注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。
兩條直線的交點(diǎn):兩條直線的交點(diǎn)的個(gè)數(shù)取決于這兩條直線的方程組成的方程組的解的個(gè)數(shù)。
5.直線方程的五種形式
確定直線方程需要有兩個(gè)互相獨(dú)立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。
直線的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點(diǎn)式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過(guò)原點(diǎn)的直線。
6.直線的交點(diǎn)坐標(biāo)與距離公式
。1)兩直線的交點(diǎn)坐標(biāo)
一般地,將兩條直線的方程聯(lián)立,得方程組
若方程組有唯一解,則兩條直線相交,解即為交點(diǎn)的坐標(biāo);若方程組無(wú)解,則兩條直線無(wú)公共點(diǎn),此時(shí)兩條直線平行。
(2)兩點(diǎn)間距離
兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式
特別地:軸,則、軸,則
。3)點(diǎn)到直線的距離公式
點(diǎn)到直線的距離為:
。4)兩平行線間的距離公式:
若,則:
注意點(diǎn):x,y對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)相等。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
什么是不等式?
一般地,用純粹的大于號(hào)“>”、小于號(hào)“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))“≥”、不大于號(hào)(小于或等于號(hào))“≤”連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式?偟膩(lái)說(shuō),用不等號(hào)(<,>,≥,≤,≠)連接的式子叫做不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號(hào)也可以為<,≤,≥,>中某一個(gè)),兩邊的'解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。
數(shù)學(xué)知識(shí)點(diǎn)1、不等式性質(zhì)比較大小方法:
。1)作差比較法(2)作商比較法
不等式的基本性質(zhì)
①對(duì)稱性:a > b,b > a
、趥鬟f性:a > b,b > ca > c
、劭杉有裕篴 > b a + c > b + c
、芸煞e性:a > b,c > 0,ac > bc
、菁臃ǚ▌t:a > b,c > d,a + c > b + d
、蕹朔ǚ▌t:a > b > 0,c > d > 0,ac > bd
、叱朔椒▌t:a > b > 0,an > bn(n∈N)
⑧開(kāi)方法則:a > b > 0
數(shù)學(xué)知識(shí)點(diǎn)2、算術(shù)平均數(shù)與幾何平均數(shù)定理:
(1)如果a、b∈R,那么a2 + b2 ≥2ab;(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))
。2)如果a、b∈R+,那么(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))推廣:
如果為實(shí)數(shù),則重要結(jié)論
。1)如果積xy是定值P,那么當(dāng)x=y時(shí),和x+y有最小值2;
。2)如果和x+y是定值S,那么當(dāng)x=y時(shí),和xy有最大值S2/4。
數(shù)學(xué)知識(shí)點(diǎn)3、證明不等式的常用方法:
比較法:比較法是最基本、最重要的方法。
當(dāng)不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當(dāng)不等式的兩邊都是正數(shù)且它們的商能與1比較大小,則選擇作商比較法;碰到絕對(duì)值或根式,我們還可以考慮作平方差。
綜合法:從已知或已證明過(guò)的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。
分析法:不等式兩邊的聯(lián)系不夠清楚,通過(guò)尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
簡(jiǎn)單隨機(jī)抽樣的定義:
一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。
簡(jiǎn)單隨機(jī)抽樣的特點(diǎn):
(1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的'概率為
;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為
(2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;
(3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).
(4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣
簡(jiǎn)單抽樣常用方法:
(1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫(xiě)在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法.
(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開(kāi)始的數(shù)字;
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
一、集合有關(guān)概念
1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。
2、集合的中元素的三個(gè)特性:
1)元素的確定性;
2)元素的互異性;
3)元素的無(wú)序性。
說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。
。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
。3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}
1)用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}。
2)集合的表示方法:列舉法與描述法。
注意。撼S脭(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
關(guān)于“屬于”的'概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。
、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1)有限集含有有限個(gè)元素的集合。
2)無(wú)限集含有無(wú)限個(gè)元素的集合。
3)空集不含任何元素的集合例:{x|x2=—5}。
二、集合間的基本關(guān)系
1、“包含”關(guān)系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。
2、“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2—1=0}B={—11}“元素相同”
結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B。
①任何一個(gè)集合是它本身的子集。AA
、谡孀蛹喝绻鸄?B且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
③如果ABBC那么AC
、苋绻鸄B同時(shí)BA那么A=B
3、不含任何元素的集合叫做空集,記為Φ。
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運(yùn)算
1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。
4、全集與補(bǔ)集
。1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
記作:CSA即CSA={x?x?S且x?A}。
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
一、集合有關(guān)概念
1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。
2、集合的中元素的三個(gè)特性:1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性.
3、集合的表示:(1){?}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}4
。系谋硎痉椒ǎ毫信e法與描述法。
常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
5.關(guān)于“屬于”的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表
示某些對(duì)象是否屬于這個(gè)集合的方法。6、集合的分類:
(1).有限集含有有限個(gè)元素的集合(2).無(wú)限集含有無(wú)限個(gè)元素的集合
(3).空集不含任何元素的集合例:{x|x2=-5}=Φ
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集注意:A?B有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,記作A?
2.“相等”關(guān)系:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
①任何一個(gè)集合是它本身的子集。即A?A
②如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作A B(或BA)
、廴绻鸄?B,B?C,那么A?C④如果A?B同時(shí)B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運(yùn)算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集與補(bǔ)集(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即A?S),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作:CSA即CSA={x?x?S且x?A}
。2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,看作一個(gè)全集。通常用U來(lái)表示。
。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念
合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開(kāi)方數(shù)不小于零;(3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(7)實(shí)際問(wèn)題中的函數(shù)的'定義域還要保證實(shí)際問(wèn)題有意義.
2.構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域
再注意:(1)由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)
3.區(qū)間的概念(1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;(2)無(wú)窮區(qū)間;(3)區(qū)間的數(shù)軸表示.4.映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A?B為從集合A到集合B的一個(gè)映射。記作“f:A?B”
給定一個(gè)集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對(duì)應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說(shuō)明:函數(shù)是一種特殊的映射,映射是一種特殊的對(duì)應(yīng),①集合A、B及對(duì)應(yīng)法則f是確定的;②對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對(duì)應(yīng),它與從B到A的對(duì)應(yīng)關(guān)系一般是不同的;③對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:(Ⅰ)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(Ⅲ)不要求集合B中的每一個(gè)元素在集合A中都有原象。
5.常用的函數(shù)表示法:解析法:圖象法:列表法:
6.分段函數(shù)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);
。2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.7.函數(shù)單調(diào)性(1).設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1 如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1 注意:函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì); (2)圖象的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法 (A)定義法:○1任取x1,x2∈D,且x1 8.函數(shù)的奇偶性 。1)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2).一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù). 注意:○1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒(méi)有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。 2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,○ 則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).(3)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱. 總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:○1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;○2確定f(-x)與f(x)的關(guān)系;○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).9、函數(shù)的解析表達(dá)式 。1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域. (2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡(jiǎn)單時(shí),也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x)。 補(bǔ)充不等式的解法與二次函數(shù)(方程)的性質(zhì) 有界性 設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無(wú)界. 單調(diào)性 設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D.如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù). 奇偶性 設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù). 幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變. 奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x). 設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù). 幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱,亦即其圖在對(duì)y軸映射后不會(huì)改變. 偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x). 偶函數(shù)不可能是個(gè)雙射映射. 連續(xù)性 在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性.直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的'變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù).如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性). 簡(jiǎn)單隨機(jī)抽樣的定義: 一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。 簡(jiǎn)單隨機(jī)抽樣的特點(diǎn): (1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的.樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為_(kāi)__;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為_(kāi)___。 。2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等。 (3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。 (4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽;它是一種等概率抽樣。 簡(jiǎn)單抽樣常用方法: 。1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫(xiě)在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法。 。2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開(kāi)始的數(shù)字;第三步,獲取樣本號(hào)碼概率。 1、命題的四種形式及其相互關(guān)系是什么? 。ɑ槟娣耜P(guān)系的命題是等價(jià)命題。) 原命題與逆否命題同真、同假;逆命題與否命題同真同假。 2、對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射? 。ㄒ粚(duì)一,多對(duì)一,允許B中有元素?zé)o原象。) 3、函數(shù)的.三要素是什么?如何比較兩個(gè)函數(shù)是否相同? 。ǘx域、對(duì)應(yīng)法則、值域) 4、反函數(shù)存在的條件是什么? (一一對(duì)應(yīng)函數(shù)) 求反函數(shù)的步驟掌握了嗎? 。á俜唇鈞;②互換x、y;③注明定義域) 5、反函數(shù)的性質(zhì)有哪些? 、倩榉春瘮(shù)的圖象關(guān)于直線y=x對(duì)稱; ②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性; 6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么? 。╢(x)定義域關(guān)于原點(diǎn)對(duì)稱) 【高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 高中數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)04-25 高中數(shù)學(xué)統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)10-21 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-12 高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)05-09 文科高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-25 高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)04-25 高中數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)04-25高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15