當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)的知識點(diǎn)

初中數(shù)學(xué)的知識點(diǎn)

時間:2022-05-18 23:28:32 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)的知識點(diǎn)15篇

  在平日的學(xué)習(xí)中,大家都背過各種知識點(diǎn)吧?知識點(diǎn)也可以通俗的理解為重要的內(nèi)容。哪些知識點(diǎn)能夠真正幫助到我們呢?以下是小編精心整理的初中數(shù)學(xué)的知識點(diǎn),歡迎大家分享。

初中數(shù)學(xué)的知識點(diǎn)15篇

初中數(shù)學(xué)的知識點(diǎn)1

  方差是實(shí)際值與期望值之差平方的期望值,而標(biāo)準(zhǔn)差是方差算術(shù)平方根。 在實(shí)際計(jì)算中,我們用以下公式計(jì)算方差。

  方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示樣本的平均數(shù),n表示樣本的數(shù)量,xn表示個體,而s^2就表示方差。

  而當(dāng)用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作為樣本X的方差的估計(jì)時,發(fā)現(xiàn)其數(shù)學(xué)期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的數(shù)學(xué)期望才是X的方差,用它作為X的方差的估計(jì)具有“無偏性”,所以我們總是用[1/(n-1)]∑(xi-X~)^2來估計(jì)X的方差,并且把它叫做“樣本方差”。

  方差,通俗點(diǎn)講,就是和中心偏離的程度!用來衡量一批數(shù)據(jù)的波動大小(即這批數(shù)據(jù)偏離平均數(shù)的大小)并把它叫做這組數(shù)據(jù)的方差。記作S。 在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定。

  定義 設(shè)X是一個隨機(jī)變量,若E{[X-E(X)]^2}存在,則稱E{[X-E(X)]^2}為X的.方差,記為D(X),Var(X)或DX。

  即D(X)=E{[X-E(X)]^2}稱為方差,而σ(X)=D(X)^0.5(與X有相同的量綱)稱為標(biāo)準(zhǔn)差(或均方差)。即用來衡量一組數(shù)據(jù)的離散程度的統(tǒng)計(jì)量。

  方差刻畫了隨機(jī)變量的取值對于其數(shù)學(xué)期望的離散程度。(標(biāo)準(zhǔn)差.方差越大,離散程度越大。否則,反之)

  若X的取值比較集中,則方差D(X)較小

  若X的取值比較分散,則方差D(X)較大。

  因此,D(X)是刻畫X取值分散程度的一個量,它是衡量X取值分散程度的一個尺度。

  計(jì)算 由定義知,方差是隨機(jī)變量 X 的函數(shù)

  g(X)=∑[X-E(X)]^2 pi

  數(shù)學(xué)期望。即:

  由方差的定義可以得到以下常用計(jì)算公式:

  D(X)=∑xipi-E(x)

  D(X)=∑(xipi+E(X)pi-2xipiE(X))

  =∑xipi+∑E(X)pi-2E(X)∑xipi

  =∑xipi+E(X)-2E(X)

  =∑xipi-E(x)

  方差其實(shí)就是標(biāo)準(zhǔn)差的平方。

初中數(shù)學(xué)的知識點(diǎn)2

  1、重心的定義:平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。

  2、幾種幾何圖形的重心:

 、 線段的重心就是線段的中點(diǎn);

  ⑵ 平行四邊形及特殊平行四邊形的`重心是它的兩條對角線的交點(diǎn);

  ⑶ 三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;

 、 任意多邊形都有重心,以多邊形的任意兩個頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時,過這兩點(diǎn)鉛垂線的交點(diǎn)就是這個多邊形的重心。

  提示:⑴ 無論幾何圖形的形狀如何,重心都有且只有一個;

  ⑵ 從物理學(xué)角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

  3、常見圖形重心的性質(zhì):

 、 線段的重心把線段分為兩等份;

  ⑵ 平行四邊形的重心把對角線分為兩等份;

  ⑶ 三角形的重心把中線分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對邊中點(diǎn)距離占1份)。

  上面對重心知識點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識。

初中數(shù)學(xué)的知識點(diǎn)3

  一、平移變換:

  1。概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運(yùn)動叫做平移。

  2。性質(zhì):(1)平移前后圖形全等;

 。2)對應(yīng)點(diǎn)連線平行或在同一直線上且相等。

  3。平移的作圖步驟和方法:

 。1)分清題目要求,確定平移的方向和平移的距離;

 。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn);

 。3)沿一定的`方向,按一定的距離平移各個關(guān)健點(diǎn);

 。4)連接所作的各個關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母;

 。5)寫出結(jié)論。

  二、旋轉(zhuǎn)變換:

  1。概念:在平面內(nèi),將一個圖形繞一個定點(diǎn)沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動叫做旋轉(zhuǎn)。

  說明:

 。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

  (2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。

 。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

 。4)旋轉(zhuǎn)過程靜止時,圖形上一個點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

  2。性質(zhì):

 。1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

  (2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

 。3)旋轉(zhuǎn)前、后的圖形全等。

  3。旋轉(zhuǎn)作圖的步驟和方法:

 。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

 。2)找出圖形的關(guān)鍵點(diǎn);

 。3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對應(yīng)點(diǎn);

  (4)按原圖形順次連接這些對應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

  說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

  常見考法

  (1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

 。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。

  誤區(qū)提醒

 。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

 。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

初中數(shù)學(xué)的知識點(diǎn)4

  橢圓知識:平面內(nèi)與兩定點(diǎn)F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動點(diǎn)P的軌跡叫做橢圓。

  橢圓的第一定義

  即:│PF1│+│PF2│=2a

  其中兩定點(diǎn)F1、F2叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點(diǎn)。

  長軸為 2a; 短軸為 2b。

  橢圓的第二定義

  平面內(nèi)到定點(diǎn)F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點(diǎn)的集合(定點(diǎn)F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點(diǎn)F為橢圓的焦點(diǎn),定直線稱為橢圓的準(zhǔn)線(該定直線的方程是x=±a^2/c[焦點(diǎn)在X軸上];或者y=±a^2/c[焦點(diǎn)在Y軸上])。

  橢圓的其他定義

  根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點(diǎn)與橢圓短軸兩端點(diǎn)連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點(diǎn)的連線的斜率之積是常數(shù)k的動點(diǎn)的軌跡是橢圓,此時k應(yīng)滿足一定的條件,也就是排除斜率不存在的情況,還有K應(yīng)滿足<0且不等于-1。

  簡單幾何性質(zhì)

  1、范圍

  2、對稱性:關(guān)于X軸對稱,Y軸對稱,關(guān)于原點(diǎn)中心對稱。

  3、頂點(diǎn):(當(dāng)中心為原點(diǎn)時)(a,0)(-a,0)(0,b)(0,-b)

  4、離心率:e=c/a

  5、離心率范圍 0

  知識歸納:離心率越大橢圓就越扁,越小則越接近于圓。

  初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的'任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。

  對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  初中數(shù)學(xué)知識點(diǎn):因式分解

  因式分解

  因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意

 、俨粶(zhǔn)丟字母

  ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項(xiàng)負(fù)號放括號外

 、呃ㄌ杻(nèi)同類項(xiàng)合并。

初中數(shù)學(xué)的知識點(diǎn)5

  一、圓的相關(guān)概念

  1、圓的定義

  在一個個平面內(nèi),線段OA繞它固定的一個端點(diǎn)O旋轉(zhuǎn)一周,另一個端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線段OA叫做半徑。

  2、直線圓的與置位關(guān)系

  1.線直與圓有唯公一共時,點(diǎn)做直叫與圓線切

  2.三角的外形圓接的圓叫做三心形角外心

  3.弦切角于所等夾弧所對的的圓心角

  4.三角的內(nèi)形圓切的圓叫做三心形角內(nèi)心

  5.垂于直徑半直線必為圓的的切線

  6.過徑半外的點(diǎn)并且垂直端于半的徑直線是圓切線

  7.垂于直徑半直線是圓的的切線

  8.圓切線垂的直過切于點(diǎn)半徑

  3、圓的幾何表示

  以點(diǎn)O為圓心的圓記作“⊙O”,讀作“圓O”

  二、垂徑定理及其推論

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。

  推論1:

  (1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

  (2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

  (3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  垂徑定理及其推論可概括為:

  過圓心

  垂直于弦

  直徑平分弦知二推三

  平分弦所對的優(yōu)弧

  平分弦所對的劣弧

  三、弦、弧等與圓有關(guān)的定義

  1、弦

  連接圓上任意兩點(diǎn)的線段叫做弦。(如圖中的AB)

  2、直徑

  經(jīng)過圓心的弦叫做直徑。(如途中的CD)

  直徑等于半徑的2倍。

  3、半圓

  圓的任意一條直徑的兩個端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。

  4、弧、優(yōu)弧、劣弧

  圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。

  弧用符號“⌒”表示,以A,B為端點(diǎn)的弧記作“”,讀作“圓弧AB”或“弧AB”。

  大于半圓的弧叫做優(yōu)弧(多用三個字母表示);小于半圓的'弧叫做劣弧(多用兩個字母表示)

  四、圓的對稱性

  1、圓的軸對稱性

  圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

  2、圓的中心對稱性

  圓是以圓心為對稱中心的中心對稱圖形。

  五、弧、弦、弦心距、圓心角之間的關(guān)系定理

  1、圓心角

  頂點(diǎn)在圓心的角叫做圓心角。

  2、弦心距

  從圓心到弦的距離叫做弦心距。

  3、弧、弦、弦心距、圓心角之間的關(guān)系定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。

  推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

  六、圓周角定理及其推論

  1、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。

  2、圓周角定理

  一條弧所對的圓周角等于它所對的圓心角的一半。

  推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  七、點(diǎn)和圓的.位置關(guān)系

  設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:

  d

  d=r點(diǎn)P在⊙O上;

  d>r點(diǎn)P在⊙O外。

  八、過三點(diǎn)的圓

  1、過三點(diǎn)的圓

  不在同一直線上的三個點(diǎn)確定一個圓。

  2、三角形的外接圓

  經(jīng)過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓。

  3、三角形的外心

  三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點(diǎn),它叫做這個三角形的外心。

  4、圓內(nèi)接四邊形性質(zhì)(四點(diǎn)共圓的判定條件)

  圓內(nèi)接四邊形對角互補(bǔ)。

  九、反證法

  先假設(shè)命題中的結(jié)論不成立,然后由此經(jīng)過推理,引出矛盾,判定所做的假設(shè)不正確,從而得到原命題成立,這種證明方法叫做反證法。

  十、直線與圓的位置關(guān)系

  直線和圓有三種位置關(guān)系,具體如下:

  (1)相交:直線和圓有兩個公共點(diǎn)時,叫做直線和圓相交,這時直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);

  (2)相切:直線和圓有唯一公共點(diǎn)時,叫做直線和圓相切,這時直線叫做圓的切線,

  (3)相離:直線和圓沒有公共點(diǎn)時,叫做直線和圓相離。

  如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:

  直線l與⊙O相交d

  直線l與⊙O相切d=r;

  直線l與⊙O相離d>r;

  十一、切線的判定和性質(zhì)

  1、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  2、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  十二、切線長定理

  1、切線長

  在經(jīng)過圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之間的線段的長叫做這點(diǎn)到圓的切線長。

  2、切線長定理

  從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  十三、圓和圓的位置關(guān)系

  1、圓和圓的位置關(guān)系

  如果兩個圓沒有公共點(diǎn),那么就說這兩個圓相離,相離分為外離和內(nèi)含兩種。

  如果兩個圓只有一個公共點(diǎn),那么就說這兩個圓相切,相切分為外切和內(nèi)切兩種。

  如果兩個圓有兩個公共點(diǎn),那么就說這兩個圓相交。

  2、圓心距

  兩圓圓心的距離叫做兩圓的圓心距。

  3、圓和圓位置關(guān)系的性質(zhì)與判定

  設(shè)兩圓的半徑分別為R和r,圓心距為d,那么

  兩圓外離d>R+r

  兩圓外切d=R+r

  兩圓相交R-r

  兩圓內(nèi)切d=R-r(R>r)

  兩圓內(nèi)含dr)

  4、兩圓相切、相交的重要性質(zhì)

  如果兩圓相切,那么切點(diǎn)一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。

  十四、三角形的內(nèi)切圓

  1、三角形的內(nèi)切圓

  與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。

  2、三角形的內(nèi)心

  三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心。

  十五、與正多邊形有關(guān)的概念

  1、正多邊形的中心

  正多邊形的外接圓的圓心叫做這個正多邊形的中心。

  2、正多邊形的半徑

  正多邊形的外接圓的半徑叫做這個正多邊形的半徑。

  3、正多邊形的邊心距

  正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。

  4、中心角

  正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。

  十六、正多邊形和圓

  1、正多邊形的定義

  各邊相等,各角也相等的多邊形叫做正多邊形。

  2、正多邊形和圓的關(guān)系

  只要把一個圓分成相等的一些弧,就可以做出這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓。

  十七、正多邊形的對稱性

  1、正多邊形的軸對稱性

  正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。

  2、正多邊形的中心對稱性

  邊數(shù)為偶數(shù)的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。

  3、正多邊形的畫法

  先用量角器或尺規(guī)等分圓,再做正多邊形。

  十八、弧長和扇形面積

  1、弧長公式

  n°的圓心角所對的弧長l的計(jì)算公式為

  2、扇形面積公式

  其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長。

  3、圓錐的側(cè)面積

  其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑。

  初中數(shù)學(xué)圓解題技巧

  半徑與弦長計(jì)算,弦心距來中間站。

  圓上若有一切線,切點(diǎn)圓心半徑連。

  切線長度的計(jì)算,勾股定理最方便。

  要想證明是切線,半徑垂線仔細(xì)辨。

  是直徑,成半圓,想成直角徑連弦。

  弧有中點(diǎn)圓心連,垂徑定理要記全。

  圓周角邊兩條弦,直徑和弦端點(diǎn)連。

  弦切角邊切線弦,同弧對角等找完。

  要想作個外接圓,各邊作出中垂線。

  還要作個內(nèi)接圓,內(nèi)角平分線夢圓。

  如果遇到相交圓,不要忘作公共弦。

  內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。

  若是添上連心線,切點(diǎn)肯定在上面。

  要作等角添個圓,證明題目少困難。

  輔助線,是虛線,畫圖注意勿改變。

  假如圖形較分散,對稱旋轉(zhuǎn)去實(shí)驗(yàn)。

初中數(shù)學(xué)的知識點(diǎn)6

  最簡單的解釋就是,不等式是指用不等號可以將兩個解析式連接起來所成的式子。

  1.概念:在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。

  2、分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的`大于號、小于號“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)

  “≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個命題,也可以表示一個問題。

  我們大家在判定不等式時要記得,在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式。

初中數(shù)學(xué)的知識點(diǎn)7

 、僦本和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。

 、谥本和圓有兩個公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

  ③直線和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的`距離)

  平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

  當(dāng)x=-C/Ax2時,直線與圓相離;

初中數(shù)學(xué)的知識點(diǎn)8

  初中數(shù)學(xué)數(shù)軸知識點(diǎn)

 、偻ǔS靡粭l直線上的點(diǎn)表示數(shù),這條直線叫數(shù)軸。

 、跀(shù)軸三要素:原點(diǎn)、正方向、單位長度。

 、蹟(shù)軸上的點(diǎn)和有理數(shù)的關(guān)系:所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示出來,但數(shù)軸上的點(diǎn),不都是表示有理數(shù)。

  ④只有符號不同的兩個數(shù)叫做互為相反數(shù)(和為零)。(例:2的相反數(shù)是-2,如:2+(-2)=0;0的相反數(shù)是0)

 、輸(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,記作|a|。從幾何意義上講,數(shù)的絕對值是兩點(diǎn)間的距離(無方向性,有兩個點(diǎn))。

 、迶(shù)軸上兩點(diǎn)間的距離=|M?N|

  ⑥正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

 、邇蓚負(fù)數(shù),絕對值大的反而小。

 、鄚a|≥0(即非負(fù)性);絕對值等于一個正數(shù)的值有兩個(兩個互為相反數(shù))如:|a|=5,a=5或a=-5

  初中的數(shù)學(xué)知識點(diǎn)

  (一)整式

  1.整式:整式為單項(xiàng)式和多項(xiàng)式的統(tǒng)稱。

  2.整式加減

  整式的加減運(yùn)算時,如果遇到括號先去掉括號,再合并同類項(xiàng)。

  (1)去括號:幾個整式相加減,如果有括號就先去括號,然后再合并同類項(xiàng)。

  如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)的符號與原來相同。

  如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)的符號與原來相反。

  (2)合并同類項(xiàng):

  合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各項(xiàng)系數(shù)的和,且字母部分不變。

  3.單項(xiàng)式:由數(shù)或字母的積組成的代數(shù)式叫做單項(xiàng)式,單獨(dú)的'一個數(shù)或一個字母也叫做單項(xiàng)式。

  4.多項(xiàng)式:由若干個單項(xiàng)式相加組成的代數(shù)式叫做多項(xiàng)式。

  5.同底數(shù)冪是指底數(shù)相同的冪。

  6.同底數(shù)冪的乘法:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加

  7.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘。

  8.積的乘方:積的乘方,先把積中的每一個因數(shù)分別乘方,再把所得的冪相乘。

  9.單項(xiàng)式與單項(xiàng)式相乘

  單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、同底數(shù)冪分別相乘,對于只在一個單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個因式。

  10.單項(xiàng)式與多項(xiàng)式相乘

  單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  11.多項(xiàng)式與多項(xiàng)式相乘

  多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式的每一項(xiàng)乘另一個多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  12.同底數(shù)冪的除法:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。

  13.單項(xiàng)式除以單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式中含有的字母,則連同它的指數(shù)一起作為商的一個因式。

  14.多項(xiàng)式除以單項(xiàng)式:多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)分別除以這個單項(xiàng)式,再把所得的商相加。

  (二)相交線與平行線

  (1)相交線

  在同一平面內(nèi),兩條直線的位置關(guān)系有相交和平行兩種。如果兩條直線只有一個公共點(diǎn)時,稱這兩條直線相交。

  (2)垂線

  當(dāng)兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點(diǎn)叫垂足。

  (3)同位角

  兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側(cè)的角,我們把這樣的兩個角稱為同位角。

  (4)內(nèi)錯角

  兩條直線被第三條直線所截,兩個角分別在截線的兩側(cè),且夾在兩條被截直線之間,具有這樣位置關(guān)系的一對角叫做內(nèi)錯角。

  (5)同旁內(nèi)角

  兩條直線被第三條直線所截,在截線同旁,且在被截線之內(nèi)的兩角,叫做同旁內(nèi)角。

  (6)平行線

  幾何中,在同一平面內(nèi),永不相交(也永不重合)的兩條直線叫做平行線。

  平行線的性質(zhì):①兩直線平行,同位角相等;②兩直線平行,內(nèi)錯角相等;③兩直線平行,同旁內(nèi)角互補(bǔ)。

  (7)平移

  平移,是指在同一平面內(nèi),將一個圖形上的所有點(diǎn)都按照某個直線方向做相同距離的移動,這樣的圖形運(yùn)動叫做圖形的平移運(yùn)動,簡稱平移。

  (三)概率

  1.一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率n/m會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率。

  2.隨機(jī)事件:在一定的條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機(jī)事件。

  3.互斥事件:不可能同時發(fā)生的兩個事件叫做互斥事件。

  4.對立事件:即必有一個發(fā)生的互斥事件叫做對立事件。

  5.必然事件:那些無需通過實(shí)驗(yàn)就能夠預(yù)先確定它們在每一次實(shí)驗(yàn)中都一定會發(fā)生的事件稱為必然事件。

  6.不可能事件:那些在每一次實(shí)驗(yàn)中都一定不會發(fā)生的事件稱為不可能事件。

  初中數(shù)學(xué)知識點(diǎn)總結(jié)

  1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.

  2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

  3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解).

  4.列一元一次方程解應(yīng)用題:

  (1)讀題分析法:…………多用于“和,差,倍,分問題”

  仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

  (2)畫圖分析法: …………多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  11.列方程解應(yīng)用題的常用公式:

  (1)行程問題:距離=速度·時間;

  (2)工程問題:工作量=工效·工時;

  (3)比率問題:部分=全體·比率;

  (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

  (5)商品價(jià)格問題:售價(jià)=定價(jià)·折·,利潤=售價(jià)-成本,;

  (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

  S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h.

初中數(shù)學(xué)的知識點(diǎn)9

  名畫<最后的晚餐>中運(yùn)用到了黃金矩形的知識。接下來的內(nèi)容是初中數(shù)學(xué)黃金矩形的基礎(chǔ)知識點(diǎn)。

  黃金矩形

  黃金矩形(Golden Rectangle)的.長寬之比為黃金分割率,換言之,矩形的長邊為短邊 1.618倍。

  黃金分割率和黃金矩形能夠給畫面帶來美感,令人愉悅。

  黃金矩形的分割方法

  1)作任意正方形ABCD.

  2)用線段MN將正方形平分為兩半.

  3)用圓規(guī),以N為中心,以|CN|為半徑作弧.

  4)延長射線AB直至與以上的弧相交于E點(diǎn).

  5)延長射線DC.

  6)作線段EF⊥AE,并令射線DC與EF交于F點(diǎn).

  則ADFE為一黃金矩形.

初中數(shù)學(xué)的知識點(diǎn)10

  圓的知識:平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。

  圓心:

  (1)如定義(1)中,該定點(diǎn)為圓心

  (2)如定義(2)中,繞的那一端的端點(diǎn)為圓心。

  (3)圓任意兩條對稱軸的交點(diǎn)為圓心。

  (4) 垂直于圓內(nèi)任意一條弦且兩個端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。

  注:圓心一般用字母O表示

  直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  半徑:連接圓心和圓上任意一點(diǎn)的`線段,叫做圓的半徑。半徑一般用字母r表示。

  圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。

  圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

  圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

  圓的周長與直徑的比值叫做圓周率。

  圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計(jì)算時,通常取它的近似值,π≈3.14。

  直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。

  圓的面積公式:圓所占平面的大小叫做圓的面積。πr,用字母S表示。

  一條弧所對的圓周角是圓心角的二分之一。

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

初中數(shù)學(xué)的知識點(diǎn)11

  數(shù)據(jù)的分析

  將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的.個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

  一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

  一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

  方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。

  數(shù)據(jù)的收集與整理的步驟:1.收集數(shù)據(jù) 2.整理數(shù)據(jù) 3.描述數(shù)據(jù) 4.分析數(shù)據(jù) 5.撰寫調(diào)查報(bào)告

初中數(shù)學(xué)的知識點(diǎn)12

  初中數(shù)學(xué)多項(xiàng)式的加法中考知識點(diǎn)

  多項(xiàng)式和單項(xiàng)式一起被稱為整式,整式的運(yùn)算離不開加法,多項(xiàng)式也是如此。

  多項(xiàng)式的加法

  有限個單項(xiàng)式之和稱為多元多項(xiàng)式,簡稱多項(xiàng)式。不同類的單項(xiàng)式之和表示的多項(xiàng)式,其中系數(shù)不為零的單項(xiàng)式的最高次數(shù),稱為此多項(xiàng)式的次數(shù)。

  多項(xiàng)式的加法,是指多項(xiàng)式中同類項(xiàng)的系數(shù)相加,字母保持不變(即合并同類項(xiàng))。多項(xiàng)式的乘法,是指把一個多項(xiàng)式中的每個單項(xiàng)式與另一個多項(xiàng)式中的每個單項(xiàng)式相乘之后合并同類項(xiàng)。

  F上x1,x2,…,xn的多項(xiàng)式全體所成的集合F[x1,x2,…,xn],對于多項(xiàng)式的加法和乘法成為一個環(huán),是具有單位元素的`整環(huán)。 域上的多元多項(xiàng)式也有因式分解惟一性定理。

  關(guān)于多項(xiàng)式的加法計(jì)算的中考知識要領(lǐng)已經(jīng)為大家整合出來了,請同學(xué)們相應(yīng)做好筆記了。

初中數(shù)學(xué)的知識點(diǎn)13

  不等式的證明

  1、比較法

  包括比差和比商兩種方法。

  2、綜合法

  證明不等式時,從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導(dǎo)出要證明的命題的方法稱為綜合法,綜合法又叫順推證法或因?qū)Чā?/p>

  3、分析法

  證明不等式時,從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結(jié)為一個已經(jīng)證明過的定理、簡單事實(shí)或題設(shè)的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。

  4、放縮法

  證明不等式時,有時根據(jù)需要把需證明的不等式的值適當(dāng)放大或縮小,使其化繁為簡,化難為易,達(dá)到證明的目的,這種方法稱為放縮法。

  5、數(shù)學(xué)歸納法

  用數(shù)學(xué)歸納法證明不等式,要注意兩步一結(jié)論。

  在證明第二步時,一般多用到比較法、放縮法和分析法。

  6、反證法

  證明不等式時,首先假設(shè)要證明的命題的反面成立,把它作為條件和其他條件結(jié)合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個與命題的條件或已證明的定理或公認(rèn)的簡單事實(shí)相矛盾的結(jié)論,以此說明原假設(shè)的結(jié)論不成立,從而肯定原命題的結(jié)論成立的方法稱為反證法。

  上面的六大證明方法,絕對有一項(xiàng)是適合您的。

  初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對數(shù)學(xué)中點(diǎn)的`坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。

  對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

  初中數(shù)學(xué)知識點(diǎn):因式分解

  下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉(xiàng)負(fù)號放括號外

 、呃ㄌ杻(nèi)同類項(xiàng)合并。

初中數(shù)學(xué)的知識點(diǎn)14

  平方差公式:a^2;-b^2;=(a+b)(a-b);

  完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;

  注意:能運(yùn)用完全平方公式分解因式的多項(xiàng)式必須是三項(xiàng)式,其中有兩項(xiàng)能寫成兩個數(shù)(或式)的平方和的.形式,另一項(xiàng)是這兩個數(shù)(或式)的積的2倍。

  立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);

  立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);

  完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.

  其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)

  例如:a^2; +4ab+4b^2; =(a+2b)^

初中數(shù)學(xué)的知識點(diǎn)15

  整式及其運(yùn)算:

  【考點(diǎn)歸納】

  1.代數(shù)式:用運(yùn)算符號(加、減、乘、除、乘方、開方)把()或表示()連接而成的式子叫做代數(shù)式.

  2.代數(shù)式的值:用()代替代數(shù)式里的字母,按照代數(shù)式里的運(yùn)算關(guān)系,計(jì)算后所得的()叫做代數(shù)式的值.

  3.整式

  (1)單項(xiàng)式:由數(shù)與字母的()組成的代數(shù)式叫做單項(xiàng)式(單獨(dú)一個數(shù)或()也是單項(xiàng)式).單項(xiàng)式中的()叫做這個單項(xiàng)式的系數(shù);單項(xiàng)式中的所有字母的'()叫做這個單項(xiàng)式的次數(shù).

  (2)多項(xiàng)式:幾個單項(xiàng)式的()叫做多項(xiàng)式.在多項(xiàng)式中,每個單項(xiàng)式叫()做多項(xiàng)式的(),其中次數(shù)最高的項(xiàng)的()叫做這個多項(xiàng)式的次數(shù).不含字母的項(xiàng)叫做.

  (3)整式:()與()統(tǒng)稱整式.

  4.同類項(xiàng):在一個多項(xiàng)式中,所含()相同并且相同字母的()也分別相等的項(xiàng)叫做同類項(xiàng).合并同類項(xiàng)的法則是()。

  20xx人教版七年級數(shù)學(xué)有理數(shù)知識點(diǎn)

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);

  (2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);

  a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).

  2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.

  7.整式的除法

  ⑴單項(xiàng)式除以單項(xiàng)式的法則:把()、()分別相除后,作為商的因式;對于只在被除武里含有的字母,則連同它的指數(shù)一起作為商的一個因式.

 、贫囗(xiàng)式除以單項(xiàng)式的法則:先把這個多項(xiàng)式的每一項(xiàng)分別除以(),再把所得的商().

【初中數(shù)學(xué)的知識點(diǎn)】相關(guān)文章:

初中數(shù)學(xué)知識點(diǎn)06-07

初中數(shù)學(xué)旋轉(zhuǎn)的知識點(diǎn)05-29

初中數(shù)學(xué)的知識點(diǎn)大全06-06

初中數(shù)學(xué)概率知識點(diǎn)05-09

初中數(shù)學(xué)垂直知識點(diǎn)12-07

初中數(shù)學(xué)方差知識點(diǎn)10-28

初中數(shù)學(xué)余切的知識點(diǎn)04-07

初中數(shù)學(xué)內(nèi)錯角的知識點(diǎn)04-07

初中數(shù)學(xué)知識點(diǎn)整理02-19