- 相關推薦
小學六年級下冊數(shù)學《反比例》教案優(yōu)秀
作為一位無私奉獻的人民教師,常常要根據(jù)教學需要編寫教案,教案有助于順利而有效地開展教學活動。寫教案需要注意哪些格式呢?下面是小編收集整理的小學六年級下冊數(shù)學《反比例》教案優(yōu)秀,歡迎大家分享。
小學六年級下冊數(shù)學《反比例》教案優(yōu)秀1
教學目標:
1、理解反比例函數(shù),并能從實際問題中抽象出反比例關系的函數(shù)解析式;
2、會畫出反比例函數(shù)的圖象,并結合圖象分析總結出反比例函數(shù)的性質;
3、滲透數(shù)形結合的數(shù)學思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會數(shù)學從實踐中來又到實際中去的研究、應用過程;
5、培養(yǎng)學生的觀察能力,及數(shù)學地發(fā)現(xiàn)問題,解決問題的能力。
教學重點:
結合圖象分析總結出反比例函數(shù)的性質;
教學難點:描點畫出反比例函數(shù)的圖象
教學用具:直尺
教學方法:小組合作、探究式
教學過程:
1、從實際引出反比例函數(shù)的概念
我們在小學學過反比例關系。例如:當路程S一定時,時間t與速度v成反比例
即vt=S(S是常數(shù));
當矩形面積S一定時,長a與寬b成反比例,即ab=S(S是常數(shù))
從函數(shù)的觀點看,在運動變化的過程中,有兩個變量可以分別看成自變量與函數(shù),寫成:
。⊿是常數(shù))
。⊿是常數(shù))
一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù)。
如上例,當路程S是常數(shù)時,時間t就是v的反比例函數(shù)。當矩形面積S是常數(shù)時,長a是寬b的反比例函數(shù)。
在現(xiàn)實生活中,也有許多反比例關系的例子。可以組織學生進行討論。下面的例子僅供
2、列表、描點畫出反比例函數(shù)的圖象
例1、畫出反比例函數(shù)與的圖象
解:列表
說明:由于學生第一次接觸反比例函數(shù),無法推測出它的大致圖象。取點的時候最好多取幾個,正負可以對稱著取分別畫點描圖
一般地反比例函數(shù)(k是常數(shù),)的圖象由兩條曲線組成,叫做雙曲線。
3、觀察圖象,歸納、總結出反比例函數(shù)的性質
前面學習了三類基本的初等函數(shù),有了一定的基礎,這里可視學生的程度或展開全面的討論,或在老師的.引導下完成知識的學習。
顯示這兩個函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關反比例函數(shù)的性質呢?并能從解析式或列表中得到論證。(下列答案僅供參考)
。1)的圖象在第一、三象限?梢詳U展到k 0時的情形,即k0時,雙曲線兩支各在第一和第三象限。從解析式中,也可以得出這個結論:xy=k,即x與y同號,因此,圖象在第一、三象限。
的討論與此類似。
抓住機會,說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結合的數(shù)學思想方法。體現(xiàn)了由特殊到一般的研究過程。
(2)函數(shù)的圖象,在每一個象限內,y隨x的增大而減小;
從圖象中可以看出,當x從左向右變化時,圖象呈下坡趨勢。從列表中也可以看出這樣的變化趨勢。有理數(shù)除法說明了同樣的道理,被除數(shù)一定時,若除數(shù)大于零,除數(shù)越大,商越;若除數(shù)小于零,同樣是除數(shù)越大,商越小。由此可歸納出,當k0時,函數(shù)的圖象,在每一個象限內,y隨x的增大而減小。
同樣可以推出的圖象的性質。
。3)函數(shù)的圖象不經過原點,且不與x軸、y軸交。從解析式中也可以看出。如果x取值越來越大時,y的值越來越小,趨近于零;如果x取負值且越來越小時,y的值也越來越趨近于零。因此,呈現(xiàn)的是雙曲線的樣子。同理,抽象出圖象的性質。
函數(shù)的圖象性質的討論與次類似。
4、小結:
本節(jié)課我們學習了反比例函數(shù)的概念及其圖象的性質。大家展開了充分的討論,對函數(shù)的概念,函數(shù)的圖象的性質有了進一步的認識。數(shù)學學習要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學地發(fā)現(xiàn)問題,并能運用已有的數(shù)學知識,給以一定的解釋。即數(shù)學是世界的一個部分,同時又隱藏在世界中。
5、布置作業(yè)習題13.8 1-4
小學六年級下冊數(shù)學《反比例》教案優(yōu)秀2
教學內容:
成反比例的量。
教學目的:
使學生理解反比例的意義,會正確判斷兩種相關聯(lián)的量是否成反比例,培養(yǎng)學生判斷能力。
教學重點、難點:
反比例的意義和正確判斷成反比例的量。
教具準備:
小黑板、投影片。
教學過程
一、 復習
1、 口答正比例的意義。
。病 怎樣判斷兩種量成正比例?
3、 寫出下面各題的數(shù)量關系,并判斷在什么條件下,其中哪兩種量成正比例?
(1) 已知每小時加工零件數(shù)和加工時間,求加工零件總數(shù)。
。ǎ玻 已知每本書的價錢和購買的本數(shù),求應付的錢。
(3) 已知每公畝產量和公畝數(shù),求總產量。
二、引新
在上面的數(shù)量部系式中,如果加工零件總數(shù)一定,每小時加工零件和加工時間是什么關系?如果應付的總錢數(shù)一定,每本書的價錢和本數(shù)是什么關系?如果總產量一定,每公畝產量和公畝數(shù)是什么關系?這就是今天我們學習的內容:反比例的意義(板書)
三、 新授
。、 教學例4。
。ǎ保┏鍪纠。
引導學生觀察上表內數(shù)據(jù),然后回答下面的問題:
。、表中有哪兩種量?這兩種量相關聯(lián)嗎?為什么?
。、加工的時間是否隨著每小時加工的個數(shù)的變化而變化?怎樣變化?
C、表中兩個相的數(shù)的比值是多少?一定嗎?兩個相對應的數(shù)的積各是多少?你能從中發(fā)現(xiàn)什么規(guī)律?
。摹⑦@個積表示什么?寫出表示它們之間的數(shù)量關系式。
學生口答,師板書
小結:
2、教學例5
用600頁紙裝訂成同樣的練習本,每本的頁數(shù)和裝訂的本數(shù)有什么關系?請你先填寫下表。
每本的頁數(shù) 15 20 25 30 40 60
裝訂的本數(shù) 40
。ǎ保 先填表,然后觀察上表,回答下列問題:
表中有哪兩種量?
裝訂的本數(shù)是怎樣隨著每本的頁數(shù)變化而變化的?
表中相對應的每兩個數(shù)的乘積各是多少?
你從中發(fā)現(xiàn)什么規(guī)律?寫出它們的數(shù)量關系式?
學生回答,教師板書如下:
每本頁數(shù)裝訂的本數(shù)=紙的總頁數(shù)(一定)
(2) 小結:
從上表可以看出:每本的頁數(shù)和裝訂的本數(shù)也是兩種相關聯(lián)的量,裝訂的本數(shù)是隨著本頁數(shù)的變化的。每本的頁數(shù)擴大,裝訂的本數(shù)反而縮;每本的頁數(shù)縮小,裝訂的本數(shù)反而擴大。它們擴大、縮小的'規(guī)律是:每本的頁數(shù)和裝訂的本數(shù)的積總是一定的。
(3) 歸納反比例的意義及關系式。
。ǎ保┱埬惚容^一下上面的例4、例5,它們有什么共同特點?(教師引導學生歸納概括出反比例的意義)
。ǎ玻┡袛喑煞幢壤康姆椒ǎ焊鶕(jù)反比例的意義判斷兩種量是否面反比例的量要具備的條件:
a兩種相關聯(lián)的量。
b一種量變化,另一種也隨著變化。
C兩種量中相對應的兩個數(shù)的積一定。
(3)例4中,加工的時間隨著每小時加工數(shù)量的變化,每小時加工的數(shù)量和加工的時間的積(零件總數(shù))是一定的,我們就說每小時加工的數(shù)量和加工的時間是成反比例的量。想一想:在例5中,有哪兩種相關聯(lián)的量?它們是不是成反比例的量?為什么?(指名幾個學生口述,教師幫助糾正)
(4) 概括關系式。
如果用字母X和Y表示兩種相關聯(lián)的量,用R表示它們的積(一定),反比例關系可以用下面的式子表示:
XY=R(一定)
。常虒W例6。
播種的總公頃數(shù)一定,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?
師:大家能不能根據(jù)反比例的意義判斷一下?
指名口述,師講評。
(每天播種的公頃數(shù)和要用的天數(shù)是兩6種相關聯(lián)的量,每天播種的公頃數(shù)天數(shù)=播種的總公頃數(shù),已知播種的總公頃數(shù)一定,也就是每天播種的公頃數(shù)和天數(shù)的積是一定的,所以每天播種的公頃數(shù)和要用的天數(shù)成反比例。)
四、小結
判斷兩種相關聯(lián)的量是否成反比例,關鍵是看兩種相關聯(lián)的量中相對應的兩個數(shù)的積是否一定,積一定這兩種量成反比例。
討論:想一想:播種總公頃數(shù)一定,已經播種的公頃數(shù)和剩下的公頃數(shù)是不是成反比例?為什么?
五、鞏固練習
課本第16頁的做一做練后講評。
六、課內外作業(yè)
完成練習三的第4――7題。
【小學六年級下冊數(shù)學《反比例》教案優(yōu)秀】相關文章:
小學六年級反比例教案06-17
中班下冊優(yōu)秀數(shù)學教案03-18